Robert Cooper

Slides:



Advertisements
Similar presentations
Neutrinos from kaon decay in MiniBooNE Kendall Mahn Columbia University MiniBooNE beamline overview Kaon flux predictions Kaon measurements in MiniBooNE.
Advertisements

Measurement of the off-axis NuMI beam with MiniBooNE Zelimir Djurcic Columbia University Zelimir Djurcic Columbia University Outline of this Presentation.
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
Components of the Milky Way. Examples of Rotation Curves.
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
J. Goodman – May 2003 Quarknet Symposium May 2003 Neutrinos, Dark Matter and the Cosmological Constant The Dark Side of the Universe Jordan Goodman University.
DARK MATTER Matthew Bruemmer. Observation There are no purely observational facts about the heavenly bodies. Astronomical measurements are, without exception,
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
10/24/2005Zelimir Djurcic-PANIC05-Santa Fe Zelimir Djurcic Physics Department Columbia University Backgrounds in Backgrounds in neutrino appearance signal.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Luminous Dark Matter Brian Feldstein arXiv: B.F., P. Graham and S. Rajendran.
A Direction Sensitive Dark Matter Detector
The Dark Side of the Universe What is dark matter? Who cares?
The Number of Light Neutrino Families ● Physics motivation for measurement ● Direct / indirect searches for ● Analysis methodology for ● Single photon.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Muon Neutrino Quasi-Elastic Cross Section Measurement on Plastic Scintillator Tammy Walton December 4, 2013 Hampton University Physics Group Meeting.
24 Sep 2013 DaMaSC 2 Feng 1 DARK MATTER AND ITS PARTICLE PROPERTIES Jonathan Feng, UC Irvine Dark Matter in Southern California (DaMaSC 2) Keck Institute.
Results and Implications from MiniBooNE LLWI, 25 Feb 2011 Warren Huelsnitz, LANL
Singlet Dark Matter, Type II Seesaw and Cosmic Ray Signals Nobuchika Okada Miami Fort Fauderdale, Dec , 2009 University of Alabama, Tuscaloosa.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
MiniBooNE Michel Sorel (Valencia U.) for the MiniBooNE Collaboration TAUP Conference September 2005 Zaragoza (Spain)
Neutrino Oscillations in vacuum Student Seminar on Subatomic Physics Fundamentals of Neutrino Physics Dennis Visser
MiniBooNE Cross Section Results H. Ray, University of Florida ICHEP Interactions of the future!
DOE Review 3/18/03Steve Brice FNALPage 1 MiniBooNE Status Steve Brice Fermilab Overview Beam – Primary Beam – Secondary Beam Detector – Calibration – Triggering.
A Lightning Review of Dark Matter R.L. Cooper
中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS Constraints on the cross-section of dark matter annihilation from Fermi observation of M31 Zhengwei Li Payload.
DARK MATTER & GALACTIC ROTATION 2012 ASTRO SUMMER SCHOOL.
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Collider searchIndirect Detection Direct Detection.
Search for Sterile Neutrino Oscillations with MiniBooNE
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Dark matter and hidden U(1) X (Work in progress, In collaboration with E.J. Chun & S. Scopel) Park, Jong-Chul (KIAS) August 10, 2010 Konkuk University.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University CIPANP, June 2012.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
MiniBooNE MiniBooNE Motivation LSND Signal Interpreting the LSND Signal MiniBooNE Overview Experimental Setup Neutrino Events in the Detector The Oscillation.
Search for dark-sector Higgs and gauge bosons at B A B AR Adrian Bevan 1July 2012 h'h' A'A' χ A0A0.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
Outline: IntroJanet Event Rates Particle IdBill Backgrounds and signal Status of the first MiniBooNE Neutrino Oscillation Analysis Janet Conrad & Bill.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
Measurement of photons via conversion pairs with the PHENIX experiment at RHIC - Torsten Dahms - Master of Arts – Thesis Defense Stony Brook University.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
MiniBooNE: Status and Plans Outline Physics motivation Beamline performance Detector performance First look at the data Conclusions Fernanda G. Garcia,
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
 CC QE results from the NOvA prototype detector Jarek Nowak and Minerba Betancourt.
Precision Measurement of Muon Neutrino Disappearance with T2K Alex Himmel Duke University for the The T2K Collaboration 37 th International Conference.
Studies of Systematics for Dark Matter Observations John Carr 1.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
The Dark Universe Susan Cartwright.
An interesting candidate?
Sterile Neutrinos and WDM
An Accelerator-Produced, Sub-GeV Dark Matter Search with the MiniBooNE Neutrino Detector Robert Cooper, New Mexico State University on behalf of the MiniBooNE.
Topics in Higgs Portal Dark Matter
Dark Matter Detection,Models and Constraints
Presentation transcript:

Robert Cooper

Outline The Evidence for Dark Matter A Model for Sub-GeV Dark Matter The MiniBooNE Detector and Its Sensitivity Dark Matter Beams and Neutrino Contamination Current Analysis and Preliminary Results Upcoming work and conclusions 2NMSU Colloquium -- R.L. Cooper dark matter

THE EVIDENCE FOR DARK MATTER 3NMSU Colloquium -- R.L. Cooper

Historical Postulation of Dark Matter Fritz Zwicky applied virial theorem to Coma cluster 1 Visible matter can not explain rotational velocities of the cluster Order 100 times more matter unseen  Dark Matter NMSU Colloquium -- R.L. Cooper 1 F. Zwicky, Helv. Phys. Acta 6 (1933)

Modern Validations: Galaxy Rotation Rotational velocity a distance r from center is where M(r) is contained mass Visible mass implies a falling rotational velocity, but… Rotational velocity appears flat 5NMSU Colloquium -- R.L. Cooper 1 T. S. van Albada et al., Astrophysical Journal 295 (1985)

Modern Validations: CMB Precision cosmic microwave background temperature anisotropy measurements COBE, WMAP, Planck satellites Planck collaboration uses multi- parameter fit to extract dark energy, dark matter, etc. of universe 1 6NMSU Colloquium -- R.L. Cooper 1 Planck Collaboration: P. A. R. Ade et al., A&A Preprint (2013)

Modern Validations: Large Structure Numerical N-body simulations require dark matter model 1 Bottom-up scenarios favored from vanilla cold dark matter models (in favor of top-down from hot dark matter) 7NMSU Colloquium -- R.L. Cooper 1

Modern Validations: Gravity Lensing Weak gravitational lensing can map mass distribution Chandra X-Ray observatory mapped Bullet Cluster Strong evidence for dark matter rather than modified gravitation 8NMSU Colloquium -- R.L. Cooper 1 Images from Wikipedia

What We Know About Dark Matter Annihilate with cross section against Hubble expansion Freezes-out relic abundance Energy density today  DM = n DM M DM ≈ 0.3 GeV/cm 3 Local galactic velocity v ≈ 220 km/s (~10 -3 c) 9NMSU Colloquium -- R.L. Cooper 1 Image from P. Gondolo, arXiv:astro-ph/ [astro-ph]

Possible Models For Dark Matter? Neutrinos They exist Not enough mass and relativistic  hot dark matter Prefers top-down structure Sterile neutrinos have other cosmological constraints  possible cold dark matter 10NMSU Colloquium -- R.L. Cooper 1 G. Bertone et al., Phys. Rept. 405 (2005) 279. arXiv:hep-ph/ [hep-ph] m12m12 m22m22 m32m32 m2m2 m2m2 m32m32 m12m12 m22m22 00 solar atm solar ?? normalinverted e   m2m2 0 ?

Possible Models For Dark Matter? 11NMSU Colloquium -- R.L. Cooper 1 G. Bertone et al., Phys. Rept. 405 (2005) 279. arXiv:hep-ph/ [hep-ph] Axions Introduced to solve strong- CP problem, but have low mass < 0.01 eV Supersymmetry Candidates Neutralino Sneutrino Axino… Etc…

How To Look For Dark Matter 12NMSU Colloquium -- R.L. Cooper Collider Production Can cover most of mass range Signal is lack of a signal (Missing E T ) Annihilation Energetic particle /antiparticle signals Also gamma rays (e.g., 511 keV) Scattering Galactic halo DM scatters in detector Very low energy deposits ttt

Where Are We With Direct Searches? “WIMP Miracle” Electroweak scale masses (~100 GeV) and cross sections ( cm 2 ) give correct relic abundances Conflicting claims, mostly ruled out phase space A rich dark sector easily bypasses “miracle” 13NMSU Colloquium -- R.L. Cooper Dark Matter Sensitivity 1 G. L. Baudis, Phys. Dark Univ. 4 (2014) 50. arXiv: [astro-ph]

A MODEL FOR SUB-GEV DARK MATTER 14NMSU Colloquium -- R.L. Cooper

Why Not Sub-GeV Dark Matter? Lee-Weinberg bound: M  > O(1 GeV) presumes weak annihilation rate ~M  2 / M Z 4 which is too low New forces and force carriers  viable light thermal relic 1.Mediate SM interactions to a dark sector 2.Open up annihilation channels – circumventing L-W bound 15NMSU Colloquium -- R.L. Cooper 1 C. Boehm & P. Fayet, Nucl. Phys. B683 (2004) 219. arXiv:hep-ph/ [hep-ph] SMDS V  e, q, … V ,Z

Minimal Vector Portal Model Postulated to solve excess 511 keV  s from central galaxy bulge  extends more familiar dark photon concept U(1) vector mediator kinematically mixed Requires 4 parameters: 16NMSU Colloquium -- R.L. Cooper 1 C. Boehm & P. Fayet, Nucl. Phys. B683 (2004) 219. arXiv:hep-ph/ [hep-ph] C. Boehm et al., Phys. Rev. Lett. 92 (2004) arXiv:astro-ph/ [astro-ph] SMDS V

Dark Matter Beam and Detector High-energy production and scattering detection 17NMSU Colloquium -- R.L. Cooper 1 B. Batell et al., Phys. Rev. Lett. 113 (2014) arXiv: [hep-ph]. P. deNiverville et al., Phys. Rev. D84 (2011) arXiv: [hep-ph]. production detection boosted  beam Production Detection

Previous Beam Dump / Fixed Target Experiments – Proton Beams 18NMSU Colloquium -- R.L. Cooper 1 Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014

Current Limits Invisible m V > 2m  Final state V decays prefer to go to pairs of  s SM final states suppressed We need these for  beams 19NMSU Colloquium -- R.L. Cooper 1 B. Battell et al., Phys. Rev. Lett. 113 (2014) arXiv: [hep-ph].

The MiniBooNE Detector 12 m spherical detector with 800 tons pure mineral oil (CH 2 ) Cherenkov response with some scintillation from trace fluors Inner signal region 1280× 8” PMTs Outer veto region 240× 8” PMTs (10% photocathode coverage) Detector is very well characterized 20NMSU Colloquium -- R.L. Cooper 1 A.A. Aguilar-Arevalo et al., Nucl. Instrum. Meth. A599 (2009) 28. arXiv: [hep-ex].

THE MINIBOONE DETECTOR AND ITS SENSITIVITY 21NMSU Colloquium -- R.L. Cooper

The MiniBooNE Detector Run for over 10 years 11 oscillation papers 14 cross section and flux papers Relevant to this work NC elastic -mode (6.7×10 20 POT) NC elastic -mode (11.5×10 20 POT) 18 Ph.D. Theses 22NMSU Colloquium -- R.L. Cooper 1 See our website for a list of all publications.

The Booster Neutrino Beamline (BNB) 8.9 GeV Booster protons to BNB endstation (or Main Injector) At BNB, protons strike Be target (1.8 radiation lengths) Typical operation: 2×10 20 protons on target (POT) per year 23NMSU Colloquium -- R.L. Cooper Extraordinary Stability

Dark Matter Exclusion Plots 24NMSU Colloquium -- R.L. Cooper Nucleon – DM Electron – DM

Vector Portal Exclusion Plots 25NMSU Colloquium -- R.L. Cooper Nucleon – DM Electron – DM

What Is Expected In MiniBooNE? Consider nucleon elastic scattering Dark matter is light and accelerator boosted  MeV recoil (e - or N) Same as NC elastic  MUST SUPPRESS Reconstructed Signal True Nucleon Recoil 26NMSU Colloquium -- R.L. Cooper Looking for signal excess over neutrino (and other) “backgrounds”

DARK MATTER BEAMS AND NEUTRINO CONTAMINATION 27NMSU Colloquium -- R.L. Cooper

Accelerator Neutrino Production 28NMSU Colloquium -- R.L. Cooper In MiniBooNE this works because pion production target is small Pions escape and can decay in flight

How To Suppress and Produce    from  +  don’t let “escape” into air, absorb them in material  from  0,  : short lifetimes (  ~ )  decays before absorption, even in material Bypass Be target, hit steel beam stop  0 production in Fe and Be similar 29NMSU Colloquium -- R.L. Cooper Beam “off-target” to 50 m beamstop

Off-Target vs. On-Target Monte Carlo 30NMSU Colloquium -- R.L. Cooper On- to Off- Ratio Off-Target Flux On-Target Flux Neutrino-mode horn-on for on-target MC flux-weighted MC suppression ~70  CCQE data ~45 Better beamline MC CCQE E reconstructed CCQE Q 2 reconstructed 1 A.A. Aguilar-Arevalo et al., Phys. Rev. D79 (2009) arXiv: [hep-ex]

CURRENT ANALYSIS AND PRELIMINARY RESULTS 31NMSU Colloquium -- R.L. Cooper

Event Selection Cuts 1 Track (single recoil) in beam timing window Event is centrally contained - No activity in veto -Fiducialized inner tank Signal above hits and visible energy threshold PID: Nucleon or electron   n,p 32NMSU Colloquium -- R.L. Cooper

Particle IDentification Nucleon PID Slow scintillation, very little Cherenkov Poorer energy resolution p - 20%, n – 30% NMSU Colloquium -- R.L. Cooper Electron PID Mostly Cherenkov but shape is important e/  – fuzzy/sharp ring  0 – 2 rings  degeneracy e  collision forward peaked  another cut 33

Dark Matter Propagation Time  is massive so travels the 500 m slower than c (m  = 120 MeV  6 ns delay) Accelerator is RF bunched Can correlate event to in/out of a particular bunch  t ~ 1.5 ns Cherenkov (e  )  t ~ 4.2 ns Scintillation (N  ) Provides more sensitivity to dark matter parameter space 34NMSU Colloquium -- R.L. Cooper

Preliminary Results (3.19×10 19 POT) Total 1.86×10 20 POT in 10 month run Semi-blind: open analysis on 17% of data Beam unrelated biggest contributer Anticipate ~15% systematic uncertainty 35NMSU Colloquium -- R.L. Cooper

UPCOMING WORK AND CONCLUSIONS 36NMSU Colloquium -- R.L. Cooper

Conclusions a 37NMSU Colloquium -- R.L. Cooper

Conclusions MiniBooNE has collected 1.86×10 20 POT in beam-off-target configuration to search for sub-GeV dark matter Beam-off-target suppresses NC elastic neutrino scattering backgrounds  beam uncorrelated events dominant First of its kind, proton beam dump to a large neutrino detector  an extremely well characterized detector! Analysis underway and will be completed this summer 38NMSU Colloquium -- R.L. Cooper

Thank You! 39NMSU Colloquium -- R.L. Cooper 1 A.A. Aguilar-Arevalo et al. arXiv: [hep-ex]

BACKUPS 40NMSU Colloquium -- R.L. Cooper

Previous Beam Dump / Fixed Target Experiments – Electron Beams 41NMSU Colloquium -- R.L. Cooper 1 Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014

Current Limits Visible m V < 2m  Final state V decays are visible SM model particles, e.g., Can’t produce a pair of  s 42NMSU Colloquium -- R.L. Cooper 1 J. Blümlein & J. Brunner, Phys. Lett. B4 (2014) 320. arXiv: [hep-ph].

Meson Focusing Horn Schematic 43NMSU Colloquium -- R.L. Cooper IB + -

Energy Spectrum Reconstruction Previous neutrino running important for spectrum reconstruction NMSU Colloquium -- R.L. Cooper44 1 A.A. Aguilar-Arevalo et al., Phys. Rev. D82 (2010) arXiv: [hep-ex]. A.A. Aguilar-Arevalo et al., Phys. Rev. DXX (2015) XXXXX. arXiv: [hep-ex]. NC elastic

Energy Spectrum Reconstruction CCQE is a “standard candle” to fix new cross sections against NMSU Colloquium -- R.L. Cooper45 1 A.A. Aguilar-Arevalo et al., Phys. Rev. D82 (2010) arXiv: [hep-ex]. A.A. Aguilar-Arevalo et al., Phys. Rev. DXX (2015) XXXXX. arXiv: [hep-ex]. NC elastic