Overview of the read-out electronics for the TPCs at T2K ND280m P. Baron, D. Calvet, X. De La Broïse, E. Delagnes, F. Druillole, J-L Fallou, J-M. Reymond,

Slides:



Advertisements
Similar presentations
1 500cm 83cm 248cm TPC DETECTOR 88us 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 LATERAL.
Advertisements

Front-end electronics for the LPTPC  Connectors  Cables  Alice readout electronics  New developments  New ideas  Open questions Leif Jönsson Phys.
TPC DETECTOR SEGMENTATION OF THE READOUT PLANE LATERAL VIEW OF THE TPC
JRA01: ACTAR Collaboration : GANIL, DAPNIA Saclay, CENBG Bordeaux, Univ. Liverpool, Daresbury, GSI, Univ. Santiago de Compostela Objectives: Investigate.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
ESODAC Study for a new ESO Detector Array Controller.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
HEP2005, Lisboa July 05 Roberto Campagnolo - CERN 1 HEP2005 International Europhysics Conference on High Energy Physics ( Lisboa-Portugal,
ACTAR Nov 05 Lolly Pollacco CEA Saclay Front End Electronics for ACTAR.
T2K Time Projection Chambers Front-end Electronics – Experience Return P. Baron, H. Bervas, D. Besin, D. Calvet, T. Chaleil, C. Coquelet, X. de la Broïse,
An ATCA and FPGA-Based Data Processing Unit for PANDA Experiment H.XU, Z.-A. LIU,Q.WANG, D.JIN, Inst. High Energy Physics, Beijing, W. Kühn, J. Lang, S.
20 Feb 2002Readout electronics1 Status of the readout design Paul Dauncey Imperial College Outline: Basic concept Features of proposal VFE interface issues.
D. Peterson, “Status of the Cornell/Purdue Program” TPC R&D Mini Workshop, Orsay 12-January Status of the Cornell/Purdue Program: first events with.
- Frédéric Druillole - Présentation du SEDI 1 30/06/2015 Complete electronic Readout for Active Target (CERAT) Project Project Physicist’s demands Physicist’s.
Trigger-less and reconfigurable data acquisition system for J-PET
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
Pattern Gas Detectors. Towards an R&D Collaboration CERN, 10 September P. Baron1, A. Delbart1, X. de la Broise1, D. Calvet1,
Manfred Meyer & IDT & ODT 15 Okt Detectors for Astronomy 2009, ESO Garching, Okt Detector Data Acquisition Hardware Designs.
Calorimeter upgrade meeting - Wednesday, 11 December 2013 LHCb Calorimeter Upgrade : CROC board architecture overview ECAL-HCAL font-end crate  Short.
Large Area Endplate Prototype for the LC TPC 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes, S.
PHENIX upgrade DAQ Status/ HBD FEM experience (so far) The thoughts on the PHENIX DAQ upgrade –Slow download HBD test experience so far –GTM –FEM readout.
Micromegas Panels LP electronics P. Colas. Foreword We aim at 1 single system –Same DAQ : easier comparison, less duplicate work We have to keep in mind.
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
Update on the HBD Craig Woody BNL DC Meeting June 8, 2005.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
The AFTER electronics from a user’s point of view D. Attié, P. Colas Mamma meeting,CERN Feb T2K electronics.
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
Front-end readout study for SuperKEKB IGARASHI Youichi.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
TPC electronics for ILD P. Colas Krakow, IFJ-PAN, ILD Pre-meeting September 24, 2013.
News on GEM Readout with the SRS, DATE & AMORE
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Towards a 7-module Micromegas Large TPC prototype 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes,
Connector Differential Receiver 8 Channels 65 MHz 12 bits ADC FPGA Receive/buffer ADC data Format triggered Events Generate L1 Primitives Receive timing.
HBD/TPC Electronics Status Works done to for a)Prototype detector readout b)Understand packing density and heat loading issues c)Address the overall system.
Readout Architecture for MuCh Introduction of MuCh Layout of Much ( proposed several schemes) Read ASIC’s Key features Basic Readout chain ROC Block Diagram.
XLV INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS Tiago Pérez II Physikalisches Institut For the PANDA collaboration FPGA Compute node for the PANDA.
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
TPC electronics Status, Plans, Needs Marcus Larwill April
D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, R. Joannes, A. Le Coguie, S. Lhenoret, I. Mandjavidze, M. Riallot, E. Zonca TPC Electronics:
HBD/TPC Electronics Status Works done to for a)Prototype detector readout b)Understand packing density and heat loading issues c)Address the overall system.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Pattern Gas Detectors. Towards an R&D Collaboration CERN, 10 September P. Baron1, A. Delbart1, X. de la Broise1, D. Calvet1,
D. Attié, P. Colas, E. Delagnes, M. Riallot M. Dixit, J.-P. Martin, S. Bhattacharya, S. Mukhopadhyay Linear Collider Power Distribution & Pulsing Workshop.
S.Anvar, V.Gautard, H.Le Provost, F.Louis, K.Menager, Y.Moudden, B.Vallage, E.Zonca, on behalf of the KM3NeT consortium 1 IRFU/SEDI-CEA Saclay F
FEE Electronics progress PCB layout progress VHDL progress in TBU Prototype fixture for software 9th June 2009.
CLAS12 Central Detector Meeting, Saclay, 3 Dec MVT Read-Out Architecture & MVT / SVT Integration Issues Irakli MANDJAVIDZE.
Juin 1st 2010 Christophe Beigbeder PID meeting1 PID meeting Electronics Integration.
KM3NeT Offshore Readout System On Chip A highly integrated system using FPGA COTS S. Anvar, H. Le Provost, F. Louis, B.Vallage – CEA Saclay IRFU – Amsterdam/NIKHEF,
August 24, 2011IDAP Kick-off meeting - TileCal ATLAS TileCal Upgrade LHC and ATLAS current status LHC designed for cm -2 s 7+7 TeV Limited to.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Vladimir Zhulanov for BelleII ECL group Budker INP, Novosibirsk INSTR2014, Novosibirsk 2014/02/28 1.
Overview of TPC Front-end electronics I.Konorov Outline:  TPC prototype development  Readout scheme of the final TPC detector and further developments.
Architecture and Implementation of the Front-End Electronics of the Time Projection Chambers in the T2K Experiment P. Baron, D. Besin, D. Calvet, C. Coquelet,
Firmware and Software for the PPM DU S. Anvar, H. Le Provost, Y.Moudden, F. Louis, E.Zonca – CEA Saclay IRFU – Amsterdam/NIKHEF, 2011 March 30.
IRFU The ANTARES Data Acquisition System S. Anvar, F. Druillole, H. Le Provost, F. Louis, B. Vallage (CEA) ACTAR Workshop, 2008 June 10.
MADEIRA Valencia report V. Stankova, C. Lacasta, V. Linhart Ljubljana meeting February 2009.
FEE for TPC MPD__NICA JINR
A General Purpose Charge Readout Chip for TPC Applications
PRAD DAQ System Overview
Large Area Endplate Prototype for the LC TPC
A Readout Electronics System for GEM Detectors
CoBo - Different Boundaries & Different Options of
Power pulsing of AFTER in magnetic field
ECAL OD Electronic Workshop 7-8/04/2005
TPC Large Prototype Toward 7 Micromegas modules
Front-end electronic system for large area photomultipliers readout
PID meeting Mechanical implementation Electronics architecture
DAQ and visualization software
Presentation transcript:

Overview of the read-out electronics for the TPCs at T2K ND280m P. Baron, D. Calvet, X. De La Broïse, E. Delagnes, F. Druillole, J-L Fallou, J-M. Reymond, E. Virique, E. Zonca DSM/DAPNIA/SEDI, CEA Saclay Gif-sur-Yvette Cedex, France

Paris 12 September Plan Context TPC Read-out Architecture Summary

Paris 12 September TPC Configuration Features 3 TPCs stations; each with 2 planes of 2 x 6 detector modules Each detector module: Micromegas, cm square Module segmentation: 1728 pads of 9.7 mm x 6.9 mm Total number of pads: space points in z-axis, (2.5 mm spacing) 3 TPC stations 1 m 2.5 m x y z Detector module

Paris 12 September Outline of Requirements Non Functional and Environmental Compact, low power, modest magnetic field (0.2 T), no radiation Underground experiment (Japan), fire and seismic safety rules Functional and Performance Noise, dynamic range, resolution, linearity SNR=100 (i.e. 700 e - rms for 12 fC MIP), 10 MIP on 12 bits, 1-5% Event rate: ~0.3 Hz spill + cosmic. For DAQ: 20 Hz mean and max. 512 space points, various gas: µs drift (1.25 m drift distance) Support for GEM and Micromegas charge amplification technology Demands on front-end electronics and data acquisition Highly segmented detector (124 k channels) Extreme burstiness of initial data (several Tbaud/s peak) Large event size (90 MB) but modest event rate (few Hz) → Strategy: re-use ALTRO based electronics for detector R&D; while designing new read-out electronics

Paris 12 September Complete Logical Read-Out Flow Architecture principles Front-end ASIC with analog memory (Switch Capacitor Array) ADC + digital buffer mounted close to the detector Multiple optical fibers send data to off-detector concentrators Interface to common DAQ via standard network Pre-amp and shapers Samplers and analog memory buffers Analog to digital conversion Digital buffer Data concentration ~ channels 1728 Front end ASICs On-detector electronics 72 Optical fibers 1-6 Tbaud*/s peak *1 baud = 10 bit ~2 ms retention max. 34 Gbaud/s peak 400 Gbit/s peak ~1-10 Gbit/s averaged Shared DAQ system ~0.1-1 Gbit/s Standard LAN connection(s) 432 Front end cards 6 Concentrator Cards 72 Mezzanines

Paris 12 September Detector Module Read-out 72 modules in total 72-channel ASIC Quad-channel ADC digital Front-end Mezzanine card (FEM) Optical Transceiver FPGA 80-pin connector 288-channel analog Front-End Card (FEC) 1728-pad detector plane Slow-control network Fiber to DCC Power bar Low- voltage power

Paris 12 September TPC Plane Readout Off-detectorInside the Magnet 1 of 6 TPC planes shown – 3 TPC stations 6 x 2 detector modules per TPC plane – 72 modules in total 1 duplex optical readout fiber per detector module 1 external data concentrator per TPC plane – 6 concentrators in total Data Concentrator Card Detector Module 12 optical fibers Front- End Card TPC plane Front-End Mezzanine card Optical link x 6

Paris 12 September TPC Event Building, DAQ Interface Principles Event Building for TPC data over backplane bus with a PC or each concentrator send data directly to the DAQ via a LAN connection Interface to common DAQ system via standard Gigabit Ethernet LAN TPCs (like other detectors) compliant to the experiment wide physical interface specifications, protocols and software framework TCP/IP Commercial Linux PC 6 concentrators VME/PCI backplane bus Gigabit Ethernet Network Common DAQ Run Control Detector B Detector A Detector TPCs Global Clock Trigger

Paris 12 September Front-end ASIC Synopsis Serial Interface Trigger CK In Test 512 cells SCA FILTER Tpeak;Gain CSA 1 channel X64 BUFFER SLOW CONTROL TESTSCA MANAGER StopCK ADC Asic T2K GAIN Number of channels72Sampling frequency1MHz to 50MHz Number of Time bins511Shaping Time100ns to 2µs MIP12fC to 60fC Read out frequency 20 to 25MHz MIP/noise100Signal PolarityNegative (TPC) or positive Dynamic range10 MIPS on 12bitsCalibration Selection 1/72 I.N.L1% [0-3 MIPS];5% [3-10 MIPS]Test1 capacitor / channel GainAdjustable (4 values)

Paris 12 September Front-end ASIC: AFTER AFTER : Asic For Tpc Electronic Read-out Technology: AMS CMOS 0.35  m Area: 7546  m x 7139  m Submission: 24 April 2006 Delivered: end of July Package: LQFP 160 pins; Plastic dimensions: 30mm x 30mm thickness: 1.4mm pitch: 0.65mm Number of transistors: 400,000 SCA: 76x511 Cells

Paris 12 September Analog Front-end Card Features –6 Analog Front-end cards per detector module; i.e. 432 cards in total –Throughput: 0.96 Gbps per card, 414 Gbps total –Plugs at the back of detector plane; inside the magnet – water cooling –Conceptual design in progress – first prototype expected Q2-Q ASIC 4 channel ADC Passive Components Connectors to detector plane 288 channel FE card Digital output ~25 cm ~14 cm

Paris 12 September ASIC Test Card Features –Essentially FEC pre-prototype; 4 ASICs (1 socketed) –Board under assembly; expected in the next few days ZIF Socket Interface connector to FEM

Paris 12 September Connector Evaluation: Detector R&D The GEM and Micromegas detector R&D on HARP used the proposed connector on the protection card → Proposed connector is now validated Protection Card Prototype Micromegas Detector plane

Paris 12 September Digital Front-end Mezzanine Card Architecture –Commercial FPGA, memory and optical transceiver –Target: Xilinx Virtex-2 Pro / Virtex 4 with RocketIO transceiver –Design in progress – supports 4-6 FE cards –First prototype: end 2006; i.e. 6 months after number of FE card frozen Analog FE Card Clock Trigger Control Data 1.2 Gbit/s peak Analog FE Card Analog FE Card Analog FE Card FPGA Logic Memory ~6 Mbit ~5 Gbit/s ~12 Mbit/s ~5 Gbit/s Clock Trigger Control Optical Link Average rate < 50 Mbit/s Digital Front end Mezzanine Card

Paris 12 September Reduced FEM card Architecture –Daughter card for a commercial Memec FPGA kit; can drive one FEC → Setup used for ASIC test, and prototype boards validation

Paris 12 September Off-Detector Concentrator Card Principles Standard form factor (6U or 9U); VME or Compact PCI backplane bus Clock, trigger and control signals fanout, slow control interface FPGA logic VME or PCI Optical transceivers Main data 1-2 Gbit/s Slow control data Slow control commands Global clock Trigger Global clock Trigger Slow control Main data

Paris 12 September Integration, Resources On-detector Electronics Power supplies and power distribution, forced cooling; 3 kW Common/shared services Trigger generation Global clock source and inter-detector synchronization DAQ hardware interface and software Slow control, configuration, monitoring Racks, type of crate, common hardware/software platforms Cooling water and heat exchanger Resources for TPC electronics ~30 FTE (Saclay, Lpnhe, Barcelona); investment: ~480 k€ Planning 1 TPC detector module equipped with prototypes in mid-2007 Mass production of electronic cards and tests in 2008 Installation and commissioning for operation in April 2009