Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
David Wilcox Purdue University Department of Chemistry 560 Oval Dr. West Lafayette, IN
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Adam J. Fleisher David W. Pratt University of Pittsburgh Alessandro Cembran Jiali Gao University of Minnesota Charge redistribution in the β-naphthol-water.
Laboratory and Possible Interstellar Detection of trans-Methyl Formate MATT T. MUCKLE, JUSTIN L. NEILL, DANIEL P. ZALESKI, and BROOKS H. PATE University.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Molecular Spectroscopy Symposium
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Waveguide Chirped-Pulse FTMW Spectroscopy Steven T. Shipman, 1 Justin L. Neill, 1 Brett Kroncke, 1 Brooks H. Pate, 1 and P. Groner 2 1 University of Virginia.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
OSU 06/19/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Microwaves are not just for Cooking! Nicholas R. Walker University of Bristol by 1 30 th January,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
65th OSU International Symposium on Molecular Spectroscopy RH14.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
A Study of 4,4 ΄ -Dimethylaminobenzonitrile by Chirped-Pulsed Fourier Transform Microwave Spectroscopy Ryan G. Bird, Valerie J. Alstadt, and David W. Pratt.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
Microwave Study of a Hydrogen-Transfer-Triggered Methyl-Group Internal Rotation in 5-Methyltropolone Vadim V. Ilyushin a, Emily A. Cloessner b, Yung-Ching.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Adam J. Fleisher Philip J. Morgan David W. Pratt Department of Chemistry University of Pittsburgh Non-symmetric push-pull molecules in the gas phase: High.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Nathan Seifert, Wolfgang Jäger University of Alberta
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Justin Young, Leonardo Alvarez-Valtierra and David W. Pratt.
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of 1- and 2-bromobutane
ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS
Brooks H. Pate, Gordon G. Brown, and Justin L. Neill
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
FTIR Synchrotron Spectroscopy of
Presentation transcript:

Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol. Structure and Torsional Motions in the Ground Electronic State Phase. Ryan G. Bird, and David W. Pratt University of Pittsburgh Justin L. Neill and Brooks H. Pate University of Virginia

Excited State Spectroscopy FBA electronic spectrum 4 band caused by 2 internal rotations Difficult to separate S0 and S1 barriers Use CP-FTMW to study S0 0.2cm-1

Methyl Internal Rotation Internal rotation cause perturbations Ĥ = ĤRot + ĤInt Three types of rotor High barrier, Low barrier, Asymmetric Difficulties in assigning spectra1 JB95, SPCAT, XIAM 1Kleiner, I. Journal of Molecular Spectroscopy 2010, 260, 1

CP-FTMW Spectrometer MW Synthesizer Arbitrary Waveform Generator Fourier Transform Free Induction Decay Chirped Pulse 240 MHz 500 MHz Digitizer (10 Gs/s)

o-Toluidine 10000 avg 500 MHz CP

High Barrier: o-Toluidine + - Ĥ = ĤRot + ĤInt + ĤQuad ĤRot ›› Ĥint ĤQuad › Ĥint Barrier high; Tunneling splitting low JB95, XIAM, SPFIT Torsion angle 60 180 300 700 cm-1 E A Morgan, P. J.; Alvarez-Valtierra, L.; Pratt, D. W. The Journal of Physical Chemistry A 2009, 113, 13221-13226.

o-Toluidine Constants A Band E Band A (MHz) 3230.29(1) 3230.35(2) B (MHz) 2188.807(1) 2188.827(2) C (MHz) 1316.940(3) 1316.943(5) χaa (MHz) 2.007(7) 2.02(1) χbb (MHz) 2.05(1) 2.04(2) χcc (MHz) -4.06(1) -4.07(2) DJ (kHz) 0.35(8) 0.5(1) DJK (kHz) -1.4(3) -2.0(5) DK (kHz) -4(4) -4(7) dJ (kHz) 0.17(5) 0.26 (7) dK(kHz) -0.4(6) 0.5(9) ΔI (amu Å2) -3.590 -3.586 Lines 52 53 F = 4←3 312-211 10000 avg 10 MHz CP A E F = 3←2 A E F = 2←1 A E F = 2←2 A E

m-Toluidine 10000 avg 500 MHz CP

Low Barrier: m-Toluidine Ĥ = ĤRot + ĤInt + ĤQuad ĤRot ≈ Ĥint Barrier low; Tunneling splitting high JB95, XIAM Torsion angle 60 180 300 A E 9 cm-1 Morgan, P. J.; Alvarez-Valtierra, L.; Pratt, D. W. The Journal of Physical Chemistry A 2009, 113, 13221-13226.

m-Toluidine Constants XIAM A (MHz) 3635.9(1) B (MHz) 1791.20(8) C (MHz) 1210.31(5) χaa (MHz) 2.3(6) χbb (MHz) 1.9(6) χcc (MHz) -4.2(6) DJ (kHz) 2(1) DJK (kHz) -2(2) DK (kHz) -31(12) dJ (kHz) 0.8(5) dK(kHz) 23(7) V3 (cm-1) 4.23(6) ΔI (amu Å2) -0.52 Lines 79

4-Fluorobenzyl Alcohol

FBA: Asymmetric Rotor 0- 0+ CH2OH rotor results in a 2-fold barrier Rotor axis is mainly along a-axis µa and µb-type transitions ΔE between 0+ and 0- is small µb-type transitions are Coriolis interactions between levels 0+ 0- 0+ 0- a b

FBA Constants FBA LIF1 Benzyl Alcohol2 A 0+ (MHz) 4628.9(20) 4758.986(1) B 0+ (MHz) 928.5(10) 1475.398(1) C 0+ (MHz) 803.1(6) 1193.4018(5) A 0- (MHz) 4628.3(15) 4759.133(1) B 0- (MHz) 928.9(10) 1475.409(1) C 0- (MHz) 803.8(10) 1193.3769(5) Fab (MHz) 222.021(8) Fbc (kHz) 57.418(1) ΔE (MHz) 492.816(2) 1Nikolaev, A. E, In Preparation 2Utzat, K. A.; Bohn, R. K.; Montgomery, J. A.; Michels, H. H.; Caminati, W. The Journal of Physical Chemistry A.

Barrier Problems Challenging to measure High Barriers > 500 cm-1 o-toluidine ≈ 700 cm-1 JB 95, SPCAT, XIAM Challenging to simulate Low Barriers m-toluidine = 4.2 cm-1 Free rotor limit Challenging to fit Asymmetric Rotor FBA: µb and µc >> µa Coriolis terms have large effect on µb/µc frequencies

Acknowledgements Pratt Group: Pate Group: Dr. David Pratt Dr. Brooks Pate Justin Young Justin Neill A.J. Fleisher Matt Muckle Phil Morgan Daniel Zaleski Jessica Thomas Amanda Steber Casey Clements Patrick Walsh Dr. Vanessa Vaquero

o-Toluidine Constants Experimental LIF1 MP2/6-31G+g(d) A Band E Band A (MHz) 3230.29(1) 3230.35(2) 3230.9(1) 3228.5(1) 3227.85 B (MHz) 2188.807(1) 2188.827(2) 2189.0(1) 2189.1(1) 2178.171 C (MHz) 1316.940(3) 1316.943(5) 1316.8(1) 1316.9(1) 1313.306 χaa (MHz) 2.007(7) 2.02(1) χbb (MHz) 2.05(1) 2.04(2) χcc (MHz) -4.06(1) -4.07(2) DJ (kHz) 0.35(8) 0.5(1) DJK (kHz) -1.4(3) -2.0(5) DK (kHz) -4(4) -4(7) dJ (kHz) 0.17(5) 0.26 (7) dK(kHz) -0.4(6) 0.5(9) ΔI (amu Å2) -3.590 -3.586 -3.51 -3.65 -3.768 Lines 52 53 1Morgan, P. J.; Alvarez-Valtierra, L.; Pratt, D. W. The Journal of Physical Chemistry A 2009, 113, 13221-13226.

m-Toluidine Constants Experimental LIF1 MP2/6-31G** A Band E Band A (MHz) 3700.847(4) 3701.3(1) 3700.2(1) 3637.741 B (MHz) 1795.884(4) 1795.9(1) 1795.4(1) 1796.290 C (MHz) 1210.344(4) 1210.4(1) 1210.3(1) 1211.494 χaa (MHz) 2.18 (5) χbb (MHz) 2.05(5) χcc (MHz) -4.23(5) DJ (kHz) 0.12(5) DJK (kHz) -0.6(1) DK (kHz) 1.2(5) dJ (kHz) 0.03(2) dK(kHz) 0.06(40) ΔI (amu Å2) -0.40 -0.414 -0.508 Lines 60 1Morgan, P. J.; Alvarez-Valtierra, L.; Pratt, D. W. The Journal of Physical Chemistry A 2009, 113, 13221-13226.