SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.

Slides:



Advertisements
Similar presentations
Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
Advertisements

Kiwoon Choi PQ-invariant multi-singlet NMSSM
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
SUSY and other BSM physics with CMS
Gravitino Dark Matter & R-Parity Violation M. Lola MEXT-CT (work with P. Osland and A. Raklev) Prospects for the detection of Dark Matter Spain,
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
Going after the Dark at Colliders David Berge (CERN)
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
Dark Matter at the LHC Bhaskar Dutta Texas A&M University
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
Looking for SUSY Dark Matter with ATLAS The Story of a Lonely Lepton Nadia Davidson Supervisor: Elisabetta Barberio.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
B. Dutta Texas A&M University Phys.Rev.Lett.99:261301, 2007; To appear Inflation, Dark Matter and Neutrino Masses Collaborators: Rouzbeh Allahverdi, Anupam.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
LHC / ILC / Cosmology Interplay Sabine Kraml (CERN) WHEPP-9, Bhubaneswar, India 3-14 Jan 2006.
S. Kraml (CERN) 1-3 Dec 2006 The Quest for SUSY : issues for collider physics and cosmology.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
Searches for New Physics Motivations Examples Searches so far Setting scene for LHC 1/12.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Physics Session Summary Nobuchika Okada Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) TILC09, Tsukuba,
Center for theoretical Physics at BUE
The Dark Side of the Universe What is dark matter? Who cares?
24 Sep 2013 DaMaSC 2 Feng 1 DARK MATTER AND ITS PARTICLE PROPERTIES Jonathan Feng, UC Irvine Dark Matter in Southern California (DaMaSC 2) Keck Institute.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami arXiv: [hep-ph]Phys.Lett.B647: and Relic abundance.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
1 Determination of Dark Matter Properties in the Littlest Higgs Model with T-parity Masaki Asano (SOKENDAI) Collaborator: E. Asakawa (Meiji-gakuin), S.
1 ILC の物理 岡田安弘 (KEK) ILC 測定器学術創成会議 2006年6月28日 KEK.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Overview of Supersymmetry and Dark Matter
Dark matter and hidden U(1) X (Work in progress, In collaboration with E.J. Chun & S. Scopel) Park, Jong-Chul (KIAS) August 10, 2010 Konkuk University.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
The Search For Supersymmetry Liam Malone and Matthew French.
The Standard Model of the elementary particles and their interactions
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
WIN 05, Delphi, Greece, June 2005Filip Moortgat, CERN WIN 05 Inclusive signatures: discovery, fast but not unambiguous Exclusive final states & long term.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
J. KalinowskiDark matter in U(1) extended SUSY1 Dark matter in the U(1) extended supersymmetric model Jan Kalinowski S.Y. Choi, H.E. Haber and P.M. Zerwas,
SPS5 SUSY STUDIES AT ATLAS Iris Borjanovic Institute of Physics, Belgrade.
Report on model separation Masaki Asano (Tohoku U.) The 12th general meeting of the ILC physics working group.
Durmu ş Ali Demir İ zmir Institute of Technology Reasons for … Results from … Extra U(1) in SUSY.
Same-Sign Diletpon Signatures of Vector-like Quarks Chuan-Ren Chen (NTNU) 12/10/2015, NCTS Annual Theory Meeting In collaboration with H.-C. Cheng and.
Journées de Prospective
Physics Overview Yasuhiro Okada (KEK)
Shufang Su • U. of Arizona
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Shufang Su • U. of Arizona
Higgs and SUSY at future colliders
Thermal sneutrino dark matter in an inverse seesaw model
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Testing the Standard Model and Beyond
Shufang Su • U. of Arizona
Physics Overview Yasuhiro Okada (KEK)
Physics Overview Yasuhiro Okada (KEK)
Dark Matter Explanation in Singlet Extension of MSSM
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres de Moriond La Thuile, 1-8 March 2008

Moriond EW S. Kraml: SUSY dark matter WIMP paradigm DM should be stable, electrically neutral, weakly and gravitationally interacting  WIMPs ― weakly interacting massive particles WIMPs are predicted by most theories beyond the Standard Model (BSM) Stable as result of discrete symmetries Thermal relic of the Big Bang Testable at colliders! Neutralino, gravitino, axino, lightest KK state, T-odd little Higgs, etc.,... BSM-DM c.f. talk by M. Tytgat

Moriond EW S. Kraml: SUSY dark matter let‘s go SUSY...

Moriond EW S. Kraml: SUSY dark matter What is SUSY?  Supersymmetry (SUSY) is a symmetry between fermions and bosons.  The SUSY generator Q changes a fermion into a boson & vice versa  Extension of space-time to include anticommuting coordinates x  → (x ,   ) with         This combines the relativistic “external” symmetries (such as Lorentz invariance) with the “internal” symmetries such as weak isospin.  Actually the unique extension of the Poincare algebra * * (the algebra of space-time translations, rotations and boosts)

Moriond EW S. Kraml: SUSY dark matter space-time symmetry (special relativity) Antiparticles space-time supersymmetry Superpartners doubling of the spectrum

Moriond EW S. Kraml: SUSY dark matter The beauties of SUSY  Unique extension of relativistic symmetries  Solution to gauge hierarchy problem  Radiative EW symmetry breaking, light Higgs  Gauge coupling unification  Ingredient of string theories  Very rich collider phenomenology  Cold dark matter candidate ....

Moriond EW S. Kraml: SUSY dark matter SUSY as a local gauge theory includes a spin-2 state, the graviton (!) and its superpartner the gravitino. Minimal Supersymmetric Standard Model (MSSM) gluino 2 charginos  ± 4 neutralinos   If SUSY comes with a new conserved parity, R P, then the lightest SUSY particle (LSP) is stable  DARK MATTER CANDIDATE Gravitino, sneutrino or lightest neutralino

Moriond EW S. Kraml: SUSY dark matter I am concentrating on the neutralino case. For gravitino DM, see talk by F. Steffen tomorrow morning

Moriond EW S. Kraml: SUSY dark matter SUSY searches at the LHC CMS

Moriond EW S. Kraml: SUSY dark matter 0101 Z q q 0202 jet jets, l + l − missing energy Large cross sections  ~100 events/day for M ~ 1 TeV Spectacular signatures  SUSY could be found early on Cascade decays into LSP lead to typical signature: multi-jets / multi-leptons plus large missing energy LHC Every SUSY event → 2 LSPs. Abundant production! LHC as DM factory

Moriond EW S. Kraml: SUSY dark matter Mass measurements: cascade decays E T miss → no peaks → mass reconstruction through kinematic endpoints [ATLAS, G. Polesello] Typical precisions: a few %

Moriond EW S. Kraml: SUSY dark matter Neutralino annihilation:   LSP as thermal relic: relic density computed as thermally avaraged cross section of all annihilation channels →  h 2 ~  v  −1

Moriond EW S. Kraml: SUSY dark matter Consequences <  h 2 < puts strong constraints on the parameter space of any model variant CMSSM: GUT-scale boundary conditions: m 0, m 1/2, A 0, plus tanb, sgn(  )

Moriond EW S. Kraml: SUSY dark matter Consequences <  h 2 < puts strong constraints on the parameter space of any model variant good  h 2 Simple SO(10) SUSY GUTs: dual requirement of Yukawa unification and DM relic density is extremley predictive → Very distinct LHC signatures: ~ GeV gluinos GeV  1 talk by S. Sekmen in YSF2

Moriond EW S. Kraml: SUSY dark matter Consequences <  h 2 < puts strong constraints on the parameter space of any model variant 2. If we can measure the properties of the SUSY particles precisely enough, then we can compute  v of the LSP → „collider prediction“ of  h 2 → compare with cosmological observations Note: this means measuring (or at least putting limits on) masses and couplings of most of the SUSY spectrum to infer

Moriond EW S. Kraml: SUSY dark matter Consequences <  h 2 < puts strong constraints on the parameter space of any model variant 2. If we can measure the properties of the SUSY particles precisely enough, then we can compute  v →  h 2 3. We can also compute the direct and indirect detection rates direct detection: m ,  N  v, local DM density indir. det.: v→0, density profile, propagation model

Moriond EW S. Kraml: SUSY dark matter However, uncertainties in   N calculation are large (~50%) Direct detection: limits and predictions Xenon10 new CDMS result! Predictions of various SUSY models

Moriond EW S. Kraml: SUSY dark matter Indirect searches: high energetic positrons or gamma rays from  annihilation

Moriond EW S. Kraml: SUSY dark matter Indirect detection: EGRET signal? [W. DeBoer, arXiv: ] 50–70 GeV neutralino? EGRET

Moriond EW S. Kraml: SUSY dark matter Higgs? SUSY? 1 GeV ~ 1.3 * K „It is impossible to overestimate the importance of discovering dark matter at the LHC. Such a discovery will imply a revision of the SM, it will strenghten the connection between particle physics, cosmology and astrophysics, and it will enormously enlarge our understanding of the present and past universe.“ G.F. Giudice, Theories for the Fermi Scale (2007)