Parikshit Gopalan Georgia Institute of Technology Atlanta, Georgia, USA.

Slides:



Advertisements
Similar presentations
Quantum Lower Bounds You probably Havent Seen Before (which doesnt imply that you dont know OF them) Scott Aaronson, UC Berkeley 9/24/2002.
Advertisements

Computing with Polynomials over Composites Parikshit Gopalan Algorithms, Combinatorics & Optimization. Georgia Tech.
Hardness of Reconstructing Multivariate Polynomials. Parikshit Gopalan U. Washington Parikshit Gopalan U. Washington Subhash Khot NYU/Gatech Rishi Saket.
Polynomial Interpolation over Composites. Parikshit Gopalan Georgia Tech.
On the degree of symmetric functions on the Boolean cube Joint work with Amir Shpilka.
Linear-Degree Extractors and the Inapproximability of Max Clique and Chromatic Number David Zuckerman University of Texas at Austin.
Extracting Randomness From Few Independent Sources Boaz Barak, IAS Russell Impagliazzo, UCSD Avi Wigderson, IAS.
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Circuit and Communication Complexity. Karchmer – Wigderson Games Given The communication game G f : Alice getss.t. f(x)=1 Bob getss.t. f(y)=0 Goal: Find.
1 Decomposing Hypergraphs with Hypertrees Raphael Yuster University of Haifa - Oranim.
Lower bounds for small depth arithmetic circuits Chandan Saha Joint work with Neeraj Kayal (MSRI) Nutan Limaye (IITB) Srikanth Srinivasan (IITB)
Approximation Algorithms Chapter 14: Rounding Applied to Set Cover.
Uniqueness of Optimal Mod 3 Circuits for Parity Frederic Green Amitabha Roy Frederic Green Amitabha Roy Clark University Akamai Clark University Akamai.
Linear Systems With Composite Moduli Arkadev Chattopadhyay (University of Toronto) Joint with: Avi Wigderson TexPoint fonts used in EMF. Read the TexPoint.
From Topological Methods to Combinatorial Proofs of Kneser Graphs Daphne Der-Fen Liu 劉 德 芬 Department of Mathematics California State University, Los Angeles.
How should we define corner points? Under any reasonable definition, point x should be considered a corner point x What is a corner point?
Complexity 16-1 Complexity Andrei Bulatov Non-Approximability.
1 List Coloring and Euclidean Ramsey Theory TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A Noga Alon, Tel Aviv.
Arithmetic Hardness vs. Randomness Valentine Kabanets SFU.
EXPANDER GRAPHS Properties & Applications. Things to cover ! Definitions Properties Combinatorial, Spectral properties Constructions “Explicit” constructions.
CSE 421 Algorithms Richard Anderson Lecture 4. What does it mean for an algorithm to be efficient?
Prof. Bart Selman Module Probability --- Part e)
CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.
CS151 Complexity Theory Lecture 6 April 15, 2004.
1 Separator Theorems for Planar Graphs Presented by Shira Zucker.
Finding a maximum independent set in a sparse random graph Uriel Feige and Eran Ofek.
(work appeared in SODA 10’) Yuk Hei Chan (Tom)
Dan Boneh Intro. Number Theory Modular e’th roots Online Cryptography Course Dan Boneh.
Simulating independence: new constructions of Condensers, Ramsey Graphs, Dispersers and Extractors Boaz Barak Guy Kindler Ronen Shaltiel Benny Sudakov.
Beating the Union Bound by Geometric Techniques Raghu Meka (IAS & DIMACS)
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Edge-disjoint induced subgraphs with given minimum degree Raphael Yuster 2012.
Testing the independence number of hypergraphs
1 Asymptotically optimal K k -packings of dense graphs via fractional K k -decompositions Raphael Yuster University of Haifa.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
Polynomials Emanuele Viola Columbia University work partially done at IAS and Harvard University December 2007.
Yuval Peled, HUJI Joint work with Nati Linial, Benny Sudakov, Hao Huang and Humberto Naves.
Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols Emanuele Viola, IAS (Work partially done during postdoc at Harvard)
Hardness amplification proofs require majority Emanuele Viola Columbia University Work also done at Harvard and IAS Joint work with Ronen Shaltiel University.
Some Favorite Problems Dan Kleitman, M.I.T.. The Hirsch Conjecture 1. How large can the diameter of a bounded polytope defined by n linear constraints.
Correlation Clustering Nikhil Bansal Joint Work with Avrim Blum and Shuchi Chawla.
Presented by Alon Levin
Models of Greedy Algorithms for Graph Problems Sashka Davis, UCSD Russell Impagliazzo, UCSD SIAM SODA 2004.
Complexity Theory and Explicit Constructions of Ramsey Graphs Rahul Santhanam University of Edinburgh.
1 IAS, Princeton ASCR, Prague. The Problem How to solve it by hand ? Use the polynomial-ring axioms ! associativity, commutativity, distributivity, 0/1-elements.
Theory of Computational Complexity Probability and Computing Chapter Hikaru Inada Iwama and Ito lab M1.
Tali Kaufman (Bar-Ilan)
Information Complexity Lower Bounds
Richard Anderson Lecture 26 NP-Completeness
A new characterization of ACC0 and probabilistic CC0
Circuit Lower Bounds A combinatorial approach to P vs NP
Chapter 5. Optimal Matchings
Joint work with Avishay Tal (IAS) and Jiapeng Zhang (UCSD)
Computability and Complexity
Effcient quantum protocols for XOR functions
Tight Fourier Tails for AC0 Circuits
Additive Combinatorics and its Applications in Theoretical CS
Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight Bart M. P. Jansen June 4th, WORKER 2015, Nordfjordeid, Norway.
Richard Anderson Lecture 25 NP-Completeness
Probabilistic existence of regular combinatorial objects
Algebraic Property Testing
Richard Anderson Lecture 28 Coping with NP-Completeness
On the effect of randomness on planted 3-coloring models
Renaming and Oriented Manifolds
5.4 T-joins and Postman Problems
Lecture 6: Counting triangles Dynamic graphs & sampling
Clustering.
Switching Lemmas and Proof Complexity
Locality In Distributed Graph Algorithms
Presentation transcript:

Parikshit Gopalan Georgia Institute of Technology Atlanta, Georgia, USA.

Explicit Ramsey Graph Constructions [Erdös] : There exists a graph G on 2 n vertices with (G), (G) · 2n. Probabilistic Method. $100 for explicit construction. [Ramsey] : Every graph on 2 n vertices has either an independent set or a clique of size n/2. Easy to construct G on 2 n vertices with (G), (G) · 2 n/2.

Alternate View Constructing Ramsey graphs: Two color the edges of K n so that there are no large monochromatic cliques. Constructing Multicolor Ramsey graphs: Color the edges of K n using t colors so that there are no large monochromatic cliques.

A Brief History of Explicit Constructions [Frankl-Wilson] : Gives (G), (G) · 2 n. Extremal set theory. [Grolmusz] : Same bound, multicolor graphs. Polynomial representations of the OR function. [Alon] : Similar to Frankl-Wilson, multicolor graphs. Polynomial representations of graphs. [Barak-Rao-Shaltiel-Wigderson] : (G), (G) · 2 n. Extractors and pseudorandomness.

Lower Bounds for AC 0 [m] Problem: Find a function that cannot be computed by polynomial size, constant depth circuits with AND, OR and Mod-m gates. For Mod-p gates (p is prime) [Razborov, Smolensky] With p = 2, the Mod-3 function is hard. For Mod-m gates (m is composite, say 6) With m = 6, is the Mod-5 function hard ? No lower bounds known for any natural function.

Polynomial Representations of Boolean functions Def: P(X 1,…,X n ) over Z m represents f: {0,1} n ! {0,1} if f(x) f(y) ) P(x) P(y) mod m Lower bounds for AC 0 [m]. Prime Case: [Razborov, Smolensky] : Small circuits Low-degree polynomials. Prove degree lower bounds. Composite Case: Low-degree polynomials ) Small circuits Degree lower bounds over Z m. (Simpler problem?)

Representing the OR function Problem: What is the degree of OR mod m ? For p prime: (n). For m composite (say 6): Conjecture: (n) [Barrington] O(n 1/2 ) upper bound. [Barrington-Beigel-Rudich] (log n) lower bound. [Barrington-Tardos] Can asymmetry help compute a symmetric function? [Barrington-Beigel-Rudich, Grolmusz, Tsai, Barrington- Tardos, Green, Alon-Beigel, Bhatnagar-G.-Lipton, Hansen]

A Connection [Grolmusz] Problem: Let F be a family of subsets S i of [n] where |S i | = 0 mod m |S i Å S j | 0 mod m How large can F be? Grolumsz: If m = 6, |F| can be superpolynomial in n. Uses O(n) degree OR polynomial of BBR. Gives a Ramsey graph matching FW. Better OR polynomials ) Better graphs.

Our Results New view of OR representations. Simple Ramsey construction from OR representations. Unifies Frankl-Wilson, Grolmusz, Alon. All based on O(n) symmetric OR polynomials. Consequences : Insight from complexity: Asymmetry versus Symmetry Extends to multicolor Ramsey graphs. Improved bounds for restricted set systems.

Outline of This Talk I Ramsey graphs from OR representations. New view of OR representations. Sample constructions. Ramsey graphs. II Limitations to Symmetric Constructions.

Outline of This Talk I Ramsey graphs from OR representations. New view of OR representations. Sample constructions. Ramsey graphs. II Limitations to Symmetric Constructions.

OR Representations New view of an OR representation: Two polynomials s.t. the union of their zero sets is {0,1} n \ {0}.

P = 0Q = 0

OR Representations New view of an OR representation: Two polynomials. Union of their zero sets is {0,1} n \ {0}. Degree of representation = max(deg(P), deg(Q)). Both polynomials mod p. P mod p, Q mod q. Prime Representations Both polynomials mod p a. Prime-power representations (n) O(n) [BBR, Alon] O(n) [FW] All give O(n) degree symmetric polynomials.

Alons Construction Choose p ¼ q, and let n = pq -1. Let P(X 1,…,X n ) = 1 – ( X i ) p-1 mod p Indicator for X i being divisible by p. Let Q(X 1,…,X n ) = 1 – ( X i ) q-1 mod q Indicator for X i being divisible by q. Both are 1 only for (0,…,0). Degree of the construction is max(p,q) = O(n). [BBR94] Take p = 2, q = 3. Special cases of OR representations modulo pq. [Frankl-Wilson] Take n = p Both polynomials modulo powers of p.

The Frankl-Wilson Construction Let n = p P(X 1,…,X n ) stays the same. Indicator for X i being divisible by p. Remaining weights are 0, p, 2p, …, p 2 -p. Q(X 1, …, X n ) = ( X i –p)...( X i – p 2 + p)mod p p Both are 1 only for (0,…,0). Degree of the construction is p = O(n). Does not use Chinese Remaindering. Extends to multicolor graph constructions.

Plug in X = x 1 : P(0,…,0) 0, P(x 1 © x 2 ) = 0, …, P(x 1 © x k ) = 0. The Ramsey Graph Construction Ramsey Construction: Vertices: {0,1} n. Edges: Add edge (x,y) if P(x © y) = 0. Thm: Degree d OR representation gives (G), (G) · n d. Consider a clique: x 1, …, x k We have: P(x i © x j ) = 0. Claim : Polynomials P(X © x 1 ), …, P(X © x k ) are LI. Dimension of vector space O(n d ). Hence k · n d. Bound size of (G) using Q(X 1,…,X n ).

The Ramsey Graph Construction Ramsey Construction: Vertices: {0,1} n. Edges: Add edge (x,y) if P(x © y) = 0. Thm: Degree d OR representation gives (G), (G) · n d. Proof by the linear algebra method [Babai-Frankl]. Plugging in d = O(n) gives a bound of 2 n. Lower degree ) better graphs.

Outline of This Talk I Ramsey graphs from OR representations. New view of OR representations. Sample constructions. Ramsey graphs construction. II Limitations to Symmetric Constructions.

Limitations to Symmetric Constructions Thm : (n) lower bound for symmetric polynomials. For any OR representation, deg(P) £ deg(Q) = (n). Symmetry vs asymmetry question applies to Ramsey graph constructions.

P mod p, Q mod q. [BBR, Alon] Gives a representation of OR over Z pq. Known lower bound: (n/pq). When n < pq [Alon] … X i represents OR mod pq. Both polynomials mod p a.[FW] Based on interpolation algorithm mod p a [G06]. Thm : (n) lower bound for symmetric polynomials. Limitations to Symmetric Constructions

High-Level Idea 1.Algebraic Step: Characterize zero-sets of low- degree multivariate polynomials. 2.Combinatorial Step: Show that there is no good partition of {0,1} n. Symmetry : Replace multivariate by univariate. Replace {0,1} n by {0,…,n}

Partition Problem Adversary gets number n. Picks 1. Primes p and q where p ¢ q > n. 2. A µ {1,…, p-1} and B µ {1, …, q-1} Every x 2 {1, …, n} is covered by A or B. Minimize |A| ¢ |B|. x mod p lies in A

Partition Problem Adversary gets number n. Picks 1. Primes p and q where p ¢ q > n. 2. A µ {1,…, p-1} and B µ {1, …, q-1} Every x 2 {1, …, n} is covered by A or B. Minimize |A| ¢ |B| p = 5, q = 7, n = …

Partition Lemma Trivial Solutions : A = {1,…, p-1} and B = {p, 2p, …, } A = {q, 2q, …} and B = {1, …, q-1} Gives |A| ¢ |B| = n. Better solutions ) Better OR representations. Partition Lemma: In any solution, |A| ¢ |B| ¸ n/8.

Symmetry vs. Asymmetry Do low degree OR polynomials exist? Conjecture [Barrington-Beigel-Rudich]: No! (for representations mod 6) Symmetric polynomials for Symmetric functions. CRT. Hard explicit construction problem ? Symmetric polynomials give graphs on {0,1} n based on distances. Q : Are such graphs not good Ramsey graphs?

Prime-Power Representations Algebraic Step : Given a univariate polynomial P(X) mod p a which is 0 at ( 1, …, k ). Give a lower bound on deg(P). Low degree polynomials mod p a have many roots. Eg: X 3 = 0 mod 27 (0,3,6 …, 24) 9 X = 0 mod 27(0,3,6 …, 24) Structure theorem for zero sets of low-degree polynomials. (Builds on interpolation algorithm [G06])

603 mod mod Roots of low degree polynomials are clustered together. Let m = 27. I Zero-Sets of low degree polynomials