Recombinant protein expression. Other alternatives Elvira Marín – Felipe Clemente WG1 - Protein expression UCM La Cristalera – Miraflores – 10/12/12
Expression (IVTT) and purification (GST) Unkown proteins cloned ̴ 260 Unkown proteins Cloned in pANT7_cGST Dr. Manuel Fuentes Chromosome 16 WG1 25 new proteins Digest with restriction enzymes Sequencing Expression (IVTT) and purification (GST) Mass spectrometry (MRM)
Gateway cloning system Unkown proteins UN-CLONED Chromosome 16 Unkown proteins Cloned in pANT7_cGST Design primers Gateway cloning system pDONR221 (recombinase) Para todas aquellas proteínas que después de los ensayos de shotgun no se encuentre y que tampoco estén disponibles en la colección de Manuel Fuentes, habrá que subclonarlas para su estudio, cosa que implica mucho más tiempo y dinero para la obtención de la proteína para continuar con los estudios de MRM. Master clone
Expression (IVTT) and purification (GST) Unkown proteins uncloned pANT7_cGST (recombinase) Digestion and Sequencing Expression (IVTT) and purification (GST) Mass spectrometry (MRM)
Protein expression ¿Compatibilidad entre los vectores?
Protein expression systems Prokaryotes Bacteria Eukaryotes Yeast Mammalian Escherichia coli Saccharomyces cerevisiae Pichia pastoris CHO, HeLa, BHK Células CHO (ovario de hámster chino), HeLa (carcinoma cervical humano), BHK (células de riñón de hámster sirio)
POST-TRANSLACTION MODIFICATION Protein expression systems LOW HIGH SPEED COST YIELD POST-TRANSLACTION MODIFICATION Mammalian Yeast Bacteria Yeast Bacteria Mammalian Mammalian Bacteria Mammaliam: HeLa, Yeast: Pichia pastoris, Bacteria: E. coli La elección del sistema de expresión viene determinada por los rendimientos que se quieran obtener y la calidad de la proteína expresada. Lo primero que hay que analizar es el número de puentes S-S, la masa de la proteína, las modificaciones post-traduccionales deseadas y el lugar de expresión de la proteína. La expresión en E. coli suele ser la forma más rápida de expresar una proteína, pero se pierden la mayoría de las modificaciones post-traduccionales presentes en las células eucariotas, aunque existen varias herramientas para solventar dichos problemas. La expresión en Pichia o sistemas basados en células de mamíferos permiten un buen plegamiento de las proteínas al tener las modificaciones post-traduccionales aunque son más caros y lentos. Bacteria Mammalian
Protein expression systems N.I. I M E. coli Yeast Mammalian El paso previo a la expresión de una proteína recombinante es el análisis bioinformático de sus propiedades. El destino final de la proteína recombinante también es muy importante a la hora de elegir el sistema de expresión, los requisitos son diferentes en función de si se va a emplear para estudios estructurales, ensayos de actividad in vitro, generación de anticuerpos o estudios in vivo. Se requieren vectores compatibles entre los distintos sistemas de expresión. El ratio de producción de proteína: traducción y plegamiento es 10 veces superior en E. coli con respecto a las células eucariotas cosa que favorece la formación de cuerpos de inclusión de las proteinas eucariotas.
E. coli compartments Advantages Disadvantages Periplasm Cytoplasm Simple purification Proteolysis is less extensive Improved folding (S-S formation) Disadvantages Signal does not always facilitate export Inclusion bodies may be formed Periplasm Inclusion bodies: easy purification protection from proteases inactive protein (non-toxic) Higher protein yield (until 30% Biomass) Simpler plasmid construct Inclusion bodies: protein folding denaturation/refolding Cytoplasm Los cuerpos de inclusión se forman con proteínas eucariotas y en menor medida con procariotas, es dependiente de la sobreexpresión de proteínas. Un cuerpo de inclusión está formado mayoritariamente por una única proteína. - Promotores fuertes o débiles (T7 o T5) (no saturar la maquinaria traduccional bacteriana) Secreción al espacio periplasmico para la formación de puentes disulturo Distintos orígenes de replicación que permiten controlar el número de copias Con proteínas de fusión y cofactores para ayudar al plegamiento de las proteínas recombinantes Múltiples etiquetas, N- o C-terminal, que permiten la identificación y purificación de la proteína El sistema Dsb es el responsable de la formación de los puentes disulfuro y normalmente la secreción al periplasma es via el sp de pelB. E. coli does not support enzyme-mediated N-linked glycosylation, O-linked glycosylation, amidation, hydroxylation, myristoylation, palmitation, or sulfation Less extensive proteolysis Simple purification Improved folding Usually no secretion Cell lysis Extracellular
Fusion partners to the recombinant protein Maltose binding protein (MBP) Glutathione-S-transferase (GST) N-utilization substrate (NusA) GST y la MBP además de favorecer el plegamiento de la proteína recombinante, se pueden utilizar como etiquetas para la posterior purificación. Small ubiquitin-modifier (SUMO) Thioredoxin
Pichia pastoris vs Saccharomyces cerevisiae Advantages P. pastoris and S. cerevisiae Short doubling time Readily manipulated genome Improved folding and post-translational modification Expression of similar genes and compatible vectors Better yield of recombinant protein (higher cell density) Methylotrophic yeast (methanol as its only carbon source) Strongly methanol induced promoters (alcohol oxidase genes: AOX1 and AOX2) Optimal growth pH 3.0-7.0 Extremely low levels of endogenous protein secretion Expression vectors integrated in the genome Disulfide bond formation and glycosylation modifications S. cerevisiae P. pastoris Preference for respiratory growth P. pastoris (S. cerevisiae prefers fermentation) and which allows higher cell densities P. pastoris culture can reach 120 g/l of dry cell weight density. Yeast has the posttranslational capacity to add glycans at both specific asparagine residues (N-linked) and serine/threonine residues (O-linked).
Expression on mammalian cells All posttranslational modifications Highest folding capacity (antibodies…) Secreted recombinant proteins for an easier purification rather than intracellular production Mammalian cells contain the most superior folding and disulfide bond formation when compared to other expression hosts. The N-linked and O-linked glycan structures formed by mammalian cells are extremely varied and are not only dependent on the protein but also on the mammalian cell type used as the expression host ( Jenkins et al., 1996). Furthermore, the cell culture conditions such as nutrient content, pH, temperature, oxygen levels and ammonia concentration can significantly affect the glycosylation profile (Butler, 2006). Stably transfected CHO few grams per liter Lowest yield Transfection more complex than plasmid transformation Stable or transient transfection (takes longer to obtain stable transformants)
Protein expression systems summary Advantages Disadvantages Fastest expression method (days) Inexpensive bioproduction media and high density biomass Simple process scale-up Well characterized genetics Limited posttranslational modifications Unsoluble proteins and not correctly folded Bacteria Rapid expression method (weeks) Inexpensive bioproduction media and high density biomass Most posttranslational modifications High folding capacity N-linked glycan structures different from mammalian forms Yeast Transient-transfection Moderate rapid expression method (weeks) All posttranslational modifications and high folding capacity Low density biomass and expensive bioproduction media Difficult process scale-up Mammalian Stable-transfection All posttranslational modifications and high folding capacity Low density biomass and expensive bioproduction media Difficult process scale-up Longest expression method (months) Mammalian
Elvira Marín – Felipe Clemente WG1 - Protein expression UCM Dra. Concha Gil Dr. Manuel Fuentes
E. coli expression systems N.I. I M La expresión en E. coli es un sistema rápido de producción de proteína por el corto tiempo de generación que tiene, alrededor de 20 min dependiendo de la cepa en cuestión. La solubilidad de cada proteína es intrínseca a su función, origen y su microambiente celular. ETAPAS: Amplificación por PCR del gen de interés Obtención del vector de clonado Digestión de ambos productos con enzimas de restricción Ligación y transformación en el sistema elegido Selección clonar del organismo con el vector recombinante Cultivo del clon e inducción de la expresión proteica