Analysis of a Cone-Based Distributed Topology Control Algorithm for Wireless Multi-hop Networks L. Li, J. Y. Halpern Cornell University P. Bahl, Y. M.

Slides:



Advertisements
Similar presentations
Impact of Interference on Multi-hop Wireless Network Performance
Advertisements

Design of a reliable communication system for grid-style traffic light networks Junghoon Lee Dept. of Computer science and statistics Jeju National University.
The Capacity of Wireless Networks Danss Course, Sunday, 23/11/03.
The Capacity of Wireless Networks
Impact of Interference on Multi-hop Wireless Network Performance Kamal Jain, Jitu Padhye, Venkat Padmanabhan and Lili Qiu Microsoft Research Redmond.
Capacity of wireless ad-hoc networks By Kumar Manvendra October 31,2002.
Communications Research Centre (CRC) Defence R&D Canada – Ottawa 1 Properties of Mobile Tactical Radio Networks on VHF Bands Li Li & Phil Vigneron Communications.
1 S4: Small State and Small Stretch Routing for Large Wireless Sensor Networks Yun Mao 2, Feng Wang 1, Lili Qiu 1, Simon S. Lam 1, Jonathan M. Smith 2.
A 2 -MAC: An Adaptive, Anycast MAC Protocol for Wireless Sensor Networks Hwee-Xian TAN and Mun Choon CHAN Department of Computer Science, School of Computing.
Multicast in Wireless Mesh Network Xuan (William) Zhang Xun Shi.
Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks By C. K. Toh.
Decentralized Reactive Clustering in Sensor Networks Yingyue Xu April 26, 2015.
Minimum Energy Mobile Wireless Networks IEEE JSAC 2001/10/18.
KAIST Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks Suho Yang (September 4, 2008) Ming Ma, Yuanyuan Yang IEEE Transactions.
Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment Paper By : Ram Ramanathan, Regina Resales-Hain Instructor : Dr Yingshu Li.
Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger.
XTC: A Practical Topology Control Algorithm for Ad-Hoc Networks
Wireless Mesh Networks 1. Architecture 2 Wireless Mesh Network A wireless mesh network (WMN) is a multi-hop wireless network that consists of mesh clients.
A Robust Interference Model for Wireless Ad-Hoc Networks Pascal von Rickenbach Stefan Schmid Roger Wattenhofer Aaron Zollinger.
CPSC 689: Discrete Algorithms for Mobile and Wireless Systems Spring 2009 Prof. Jennifer Welch.
Topology Control Murat Demirbas SUNY Buffalo Uses slides from Y.M. Wang and A. Arora.
Ad Hoc and Sensor Networks – Roger Wattenhofer –3/1Ad Hoc and Sensor Networks – Roger Wattenhofer – Topology Control Chapter 3 TexPoint fonts used in EMF.
CS541 Advanced Networking 1 Dynamic Channel Assignment and Routing in Multi-Radio Wireless Mesh Networks Neil Tang 3/10/2009.
Geometric Spanners for Routing in Mobile Networks Jie Gao, Leonidas Guibas, John Hershberger, Li Zhang, An Zhu.
CPSC 689: Discrete Algorithms for Mobile and Wireless Systems Spring 2009 Prof. Jennifer Welch.
Topology Control and Mobility Management in Mobile Ad Hoc Networks Fei Dai and JIe Wu Department of Electrical and Computer Engineering North Dakota State.
Speaker: Li-Sheng Chen 1 Jan 2, 2012 EOBDBR: an Efficient Optimum Branching-Based Distributed Broadcast Routing Protocol for Wireless Ad Hoc Networks.
Dept. of Computer Science Distributed Computing Group Asymptotically Optimal Mobile Ad-Hoc Routing Fabian Kuhn Roger Wattenhofer Aaron Zollinger.
Design and Analysis of an MST-Based Topology Control Algorithm Ning Li and Jennifer Hou Department of Computer Science University of Illinois at Urbana-Champaign.
Ad Hoc Networking Course Instructor: Carlos Pomalaza-Ráez Geographical Routing Using Partial Information for Wireless Ad Hoc Networks Rahul Jain, Anuj.
Power Optimization for Connectivity Problems MohammadTaghi Hajiaghayi, Guy Kortsarz, Vahab S. Mirrokni, Zeev Nutov IPCO 2005.
1 A Topology Control Approach to Using Directional Antennas in Wireless Mesh Networks Umesh Kumar, Himanshu Gupta and Samir R. Das Department of Computer.
1 Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment Infocom /12/20.
2008/2/191 Customizing a Geographical Routing Protocol for Wireless Sensor Networks Proceedings of the th International Conference on Information.
Adaptive CSMA under the SINR Model: Fast convergence using the Bethe Approximation Krishna Jagannathan IIT Madras (Joint work with) Peruru Subrahmanya.
Minimal Hop Count Path Routing Algorithm for Mobile Sensor Networks Jae-Young Choi, Jun-Hui Lee, and Yeong-Jee Chung Dept. of Computer Engineering, College.
Boundary Recognition in Sensor Networks by Topology Methods Yue Wang, Jie Gao Dept. of Computer Science Stony Brook University Stony Brook, NY Joseph S.B.
Ad Hoc and Sensor Networks – Roger Wattenhofer –3/1Ad Hoc and Sensor Networks – Roger Wattenhofer – Topology Control Chapter 3 TexPoint fonts used in EMF.
Design and Analysis of an MST-Based Topology Control Algorithm Ning Li, Jennifer C. Hou, and Lui Sha Department of Computer Science University of Illinois.
1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Christian Schindelhauer Algorithms for Radio Networks Winter Term 2005/2006.
GPSR: Greedy Perimeter Stateless Routing for Wireless Networks EECS 600 Advanced Network Research, Spring 2005 Shudong Jin February 14, 2005.
Ad Hoc and Sensor Networks – Roger Wattenhofer –4/1Ad Hoc and Sensor Networks – Roger Wattenhofer – Topology Control Chapter 4 TexPoint fonts used in EMF.
SRL: A Bidirectional Abstraction for Unidirectional Ad Hoc Networks. Venugopalan Ramasubramanian Ranveer Chandra Daniel Mosse.
A Dead-End Free Topology Maintenance Protocol for Geographic Forwarding in Wireless Sensor Networks IEEE Transactions on Computers, vol. 60, no. 11, November.
Computer Network Lab. Integrated Coverage and Connectivity Configuration in Wireless Sensor Networks SenSys ’ 03 Xiaorui Wang, Guoliang Xing, Yuanfang.
Using local geometry for Topology Construction in Wireless Sensor Networks Sameera Poduri Robotic Embedded Systems Lab(RESL)
An Energy-Efficient Geographic Routing with Location Errors in Wireless Sensor Networks Julien Champ and Clement Saad I-SPAN 2008, Sydney (The international.
LOCALIZED MINIMUM - ENERGY BROADCASTING IN AD - HOC NETWORKS Paper By : Julien Cartigny, David Simplot, And Ivan Stojmenovic Instructor : Dr Yingshu Li.
Energy-Aware Data-Centric Routing in Microsensor Networks Azzedine Boukerche SITE, University of Ottawa, Canada Xiuzhen Cheng, Joseph Linus Dept. of Computer.
Self-stabilizing energy-efficient multicast for MANETs.
Localized Low-Power Topology Control Algorithms in IEEE based Sensor Networks Jian Ma *, Min Gao *, Qian Zhang +, L. M. Ni *, and Wenwu Zhu +
Tianyang Wang Tianxiong Yang Advanced Computer Networks Fall 2014 Modification of STC Algorithm.
DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad-Hoc Networks Injong Rhee (with Ajit Warrier, Jeongki Min, Lisong Xu) Department of Computer.
Architectures and Applications for Wireless Sensor Networks ( ) Topology Control Chaiporn Jaikaeo Department of Computer Engineering.
Introduction Wireless Ad-Hoc Network  Set of transceivers communicating by radio.
1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Christian Schindelhauer Algorithms for Radio Networks Winter Term 2005/2006.
Impact of Interference on Multi-hop Wireless Network Performance
L. Li, J. Y. Halpern Cornell University
Does Topology Control Reduce Interference?
Topology Control –power control
Ning Li and Jennifer C. Hou University of Illinois at Urbana-Champaign
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
Topology Control and Its Effects in Wireless Networks
Totally Disjoint Multipath Routing in Multihop Wireless Networks Sonia Waharte and Raoef Boutaba Presented by: Anthony Calce.
Throughput-Optimal Broadcast in Dynamic Wireless Networks
Introduction Wireless Ad-Hoc Network
Multi-channel, multi-radio
Speaker : Lee Heon-Jong
CMPE 252A : Computer Networks
Constructing a m-connected k-Dominating Set in Unit Disc Graphs
Presentation transcript:

Analysis of a Cone-Based Distributed Topology Control Algorithm for Wireless Multi-hop Networks L. Li, J. Y. Halpern Cornell University P. Bahl, Y. M. Wang, and R. Wattenhofer Microsoft Research, Redmond

The Aladdin Home Networking System Powerline Network Phoneline Ethernet LAN Home Gateway Alert Router IM Wireless Sensor Network

OUTLINE Motivation Bigger Picture and Related Work Basic Cone-Based Algorithm –Summary of Two Main Results –Properties of the Basic Algorithm Optimizations –Properties of Asymmetric Edge Removal Performance Evaluation

Example of No Topology Control with maximum transmission radius R (maximum connected node set) High energy consumption High interference Low throughput Motivation for Topology Control

Network may partition Example of No Topology Control with smaller transmission radius

Global connectivity Low energy consumption Low interference High throughput Example of Topology Control

Bigger Picture and Related Work Routing MAC / Power-controlled MAC Selective Node Shutdown Topology Control Relative Neighborhood Graphs, Gabriel graphs, Sphere-of-Influence graphs, -graphs, etc. [GAF] [Span] [Hu 1993] [Ramanathan & Rosales- Hain 2000] [Rodoplu & Meng 1999] [Wattenhofer et al. 2001] Computational Geometry [MBH 01] [WTS 00]

Basic Cone-Based Algorithm (INFOCOM 2001) Assumption: receiver can determine the direction of sender –Directional antenna community: Angle of Arrival problem Each node u broadcasts Hello with increasing power (radius) Each discovered neighbor v replies withAck.

Cone-Based Algorithm with Angle Need a neighbor in every -cone. Can I stop? No! Theres an -gap!

Notation E = { ( u, v ) V x V: v is a discovered neighbor by node u } –G = (V, E ) –E may not be symmetric (B,A) in E but (A,B) not in E

Two symmetric sets E + = { ( u, v ): ( u, v ) E or ( v, u ) E } –Symmetric closure of E –G + = (V, E + ) E - = { ( u, v ): ( u, v ) E and ( v, u ) E } –Asymmetric edge removal –G - = (V, E - )

Summary of Two Main Results Let G R = (V, E R ), E R = { ( u, v ): d( u, v ) R } Connectivity Theorem –If 150, then G + preserves the connectivity of G R and the bound is tight. Asymmetric Edge Theorem –If 120, then G - preserves the connectivity of G R and the bound is tight.

The Why-150 Lemma 150 =

Counterexample for = Properties of the Basic Algorithm

Counterexample for = 150 +

For 150 ( 5 /6 ) Connectivity Lemma –if d(A,B) = d R and (A,B) E +, there must be a pair of nodes, one red and one green, with distance less than d(A,B).

Connectivity Theorem Order the edges in E R by length and induction on the rank in the ordering –For every edge in E R, theres a corresponding path in G +. If 150, then G + preserves the connectivity of G R and the bound is tight.

Optimizations Shrink-back operation –Boundary nodes can shrink radius as long as not reducing cone coverage Asymmetric edge removal –If 120, remove all asymmetric edges Pairwise edge removal –If < 60, remove longer edge e 2 e1e1 e2e2 A B C

Properties of Asymmetric Edge Removal Counterexample for = 120 +

For 120 ( 2 /3 ) Asymmetric Edge Lemma –if d(A,B) R and (A,B) E, there must be a pair of nodes, W or X and node B, with distance less than d(A,B).

Asymmetric Edge Theorem Two-step inductions on E R and then on E –For every edge in E R, if it becomes an asymmetric edge in G, then theres a corresponding path consisting of only symmetric edges. If 120, then G - preserves the connectivity of G R and the bound is tight.

Performance Evaluation Simulation Setup –100 nodes randomly placed on a 1500m-by-1500m grid. Each node has a maximum transmission radius 500m. Performance Metrics –Average Radius –Average Node Degree

Average Radius

Average Node Degree

In response to mobility, failures, and node additions Based on Neighbor Discovery Protocol (NDP) beacons –Join u (v) event: may allow shrink-back –Leave u (v) event: may resume Hello protocol –AngleChange u (v) event: may allow shrink-back or resume Hello protocol Careful selection of beacon power Reconfiguration

Distributed cone-based topology control algorithm that achieves maximum connected node set –If we treat all edges as bi-directional 150-degree tight upper bound –If we remove all unidirectional edges 120-degree tight upper bound Simulation results show that average radius and node degree can be significantly reduced Summary