Better pointing with HFT PIXELS a focus on the mechanics 15-Jan-2009 Wieman.

Slides:



Advertisements
Similar presentations
L. Greiner 1IPHC meeting – September 5-6, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
Advertisements

Manchester 09/sept/2008A.Falou & P.Cornebise {LAL-Orsay}1 CALICE Meeting/ Manchester Sept 2008 SLAB Integration & Thermal Measurements.
HFT Technical Overview September 26, HFT 2013 TPC FGT 2011 STAR Detectors Fast and Full azimuthal particle identification EMC+EEMC+FMS (-1 ≤ 
HFT PXL Mechanical WBS 1.2 March 2010 Howard Wieman LBNL 1.
HFT PIXEL Mechanical Progress Strasbourg June-2009 Wieman 1.
MICE RF Cavity Design and Fabrication Update Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 27, 2004.
1 Ladder assembly steps HFT PIXEL updated for ultimate chip ladders 2/12/2012 ladder fixture u.SLDASM.
Out2 silk screen assembly H. Wieman revised Jan 30, 2009 for aluminum silkscreen frame with 5 mm dowel pins.
L. Greiner1SLAC Test Beam 03/17/2011 STAR LBNL Leo Greiner, Eric Anderssen, Howard Matis, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
LBNL Michal Szelezniak, Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
Research and Development for the HFT at STAR Leo Greiner BNL DAC 03/15/2006.
L. Greiner 1PXL BNL Safety Review– September 26, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal.
HFT PXL Mechanical July 2010 Howard Wieman LBNL 1.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
Pixel Upgrade Local Supports Based on Thermally Conducting Carbon Foam E. Anderssen, M. Cepeda, S. Dardin, M. Garcia-Sciveres, M. Gilchriese, N. Hartman,
PXL vibration and stability 1/7/2014. Measurements of: Cooling air induced vibration of the PXL sensors as a function of air flow DC position change as.
HFT & PXL geometry F.Videbæk Brookhaven National Laboratory 13/9/12.
Engineering Division 1 Mechanical and Integration CD0 Walkthru, 19-Dec, 2007 Eric Anderssen, LBNL.
STAR-PXL Mechanical Integration and Cooling St. Odile Ultra-Thin Vertex Detector Workshop 8-Sept-2011 Howard Wieman.
Ladder assembly steps HFT PIXEL 1/04/2009 ladder fixture.SLDASM.
Thomas Jefferson National Accelerator Facility Page 1 IPR October Independent Project Review of 12 GeV Upgrade Jefferson Lab October 18-20,
Wieman: 1 LBNL Status and R&D plans for the STAR Microvertex Detector Development 22-Nov-03 LBNL Fred Bieser, Robin Gareus (Heidelberg), Leo Greiner, Howard.
H. Wieman1STAR HFT CD1 Review, BNL, November 2009 STAR HFT PIXEL Detector WBS 1.2 Howard Wieman LBNL.
The ALICE Silicon Pixel Detector Gianfranco Segato Dipartimento di Fisica Università di Padova and INFN for the ALICE Collaboration A barrel of two layers.
18 November 2010 Immanuel Gfall (HEPHY Vienna) SVD Mechanics IDM.
L. Greiner 1IPHC meeting – September 5-6, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
November 16, 2001 C. Newsom BTeV Pixel Modeling, Prototyping and Testing C. Newsom University of Iowa.
PXL Mechanical Hinge rework in aluminum and carriage redesign Kinematic rework and analysis Insertion test - detailing and fabrication instructions Spatial.
ILC Vertex Tracker Ladder Studies At LBNL M Battaglia, D Contarato, L Greiner, D Shuman LBNL, Berkeley.
HFT PIXEL Detector Pre-practice CDR-1 Review 3-Sept Wieman 1.
1 Advanced Endplate - mechanics: Development of a Low-Material TPC Endplate for ILD Dan Peterson Laboratory for Elementary-Particle Physics, Cornell University.
L. Greiner 1IPHC meeting – May 7, 2012 STAR HFT Plans for the next year A short report on HFT/PXL plans for post May 2012 TPC – Time Projection Chamber.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
1 ladder to sector out2 bond fixture HFT PIXEL 11/16/2008 ladder to out2 bond fixture.SLDASM.
MAPS based vertex detector at STAR Michal Szelezniak 1 on behalf of: E. Anderssen 1, X. Dong 1, L. Greiner 1, J. Kapitan 2,S. Margetis 3, H. Matis 1, H.G.
HFT PIXEL Detector Director’s review May-2009 Wieman 1.
VG1 i T i March 9, 2006 W. O. Miller ATLAS Silicon Tracker Upgrade Upgrade Stave Study Topics Current Analysis Tasks –Stave Stiffness, ability to resist.
HFT PIXEL Mechanics HFT Review 25-Mar-2009 Wieman.
BTeV Pixel Substrate C. M. Lei November Design Spec. Exposed to >10 Mrad Radiation Exposed to Operational Temp about –15C Under Ultra-high Vacuum,
Thermal & Mechanical Support for Diamond Pixel Modules Justin Albert Univ. of Victoria Nov. 6, 2008 ATLAS Tracker Upgrade Workshop.
1 STAR HFT Pixel Detector Howard Wieman Lawrence Berkeley National Lab.
November 12, 2001 C. Newsom BTeV Pixel Modeling, Prototyping and Testing C. Newsom University of Iowa.
Physics requirement Radial envelope: 1265 mm to 1473 mm 12 wedges over 2  20 tungsten layers of 2.5 mm 10 tungsten layers of 5 mm Instrumented gap 1.25.
L. Greiner 1IPHC meeting – May 7, 2012 STAR HFT Plans for the next year A short report on HFT/PXL plans for post May 2012 TPC – Time Projection Chamber.
PHENIX Silicon Vertex Tracker. Mechanical Requirements Stability requirement, short and long25 µm Low radiation length
PXL vibration and stability 1/7/2014. Measurements of: Cooling air induced vibration of the PXL sensors as a function of air flow DC position change as.
SVD Mechanics Markus Friedl (HEPHY Vienna) BPAC, 26 October 2015.
MFT WG5: ladder disk and global assembly Stéphane BOUVIER & Sébastian HERLANT MFT WG7: Mechanics and Thermal studies Jean-Michel BUHOUR & Emili SCHIBLER.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
Thermal Model of Pixel Blade Conceptual Design C. M. Lei 11/20/08.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
Walter Sondheim 6/9/20081 DOE – Review of VTX upgrade detector for PHENIX Mechanics: Walter Sondheim - LANL.
1 HFT Wieman 11/6/ Outline  Development Status uMIMOSTAR pixel detectors uMIMOSA5 Electronic Readout uLadder mechanics uBeam pipe  Interface.
10 September 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Upgrade, Mechanics and Cooling OEPG/FAKT Meeting 2010.
EMC BWE Proto18 - Orsay Meeting 1 PANDA EMC BWE Proto18 Mikel Catania Goikoetxea, Javier Navarro Medrano, David Rodríguez Piñeiro, Yue Ma, Frank.
Technical Design for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
LBNL Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
FP420 Hybrid Mechanical Design Ray Thompson / Manchester Manchester Xmas O7 Ray Thompson Julian Freestone, Andy Elvin.
L. Greiner 1Project X Physics Study, Fermilab, June 18, 2011 STAR HFT LBNL Leo Greiner, Eric Anderssen, Thorsten Stezelberger, Joe Silber, Xiangming Sun,
1 ladder to sector in bond fixture HFT PIXEL 2/18/2009.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Summary of Presentation 1. Tolerances i. Vertical tolerances on BPMs (rf-BPM: ± 0.2μm, user BPMs: ±0.1μm, and X-BPMs: ± 0.1μm) ii. Tolerances on magnets’
Multiple Scattering and Sensor Thickness Preserving track extrapolation accuracy to bulk of particles at low momentum requires ultra-thin sensors and mechanical.
The STAR PXL detector cooling system LBNL: Eric Anderssen, Giacomo Contin, Leo Greiner, Joe Silber, Thorsten Stezelberger, Xiangming Sun, Michal Szelezniak,
Lesson 7: Thermal and Mechanical Element Math Models in Control Systems ET 438a Automatic Control Systems Technology 1lesson7et438a.pptx.
Leo Greiner, Eric Anderssen, Howard Matis,
Vertex Detector Mechanical R&D Design Questions and Issues
WG4 – Progress report R. Santoro and A. Tauro.
SiD Tracker Concepts M. Breidenbach
Presentation transcript:

Better pointing with HFT PIXELS a focus on the mechanics 15-Jan-2009 Wieman

PIXEL Work Eric Anderssen Mario Cepeda Leo Greiner Tom Johnson Howard Matis Hans Georg Ritter Thorsten Stezelberger Xiangming Sun Michal Szelezniak Jim Thomas Chi Vu ARES Corporation: Darrell Bultman Steve Ney Ralph Ricketts Erik Swensen

More precision, more D 0 in a shorter time combinatoric background reduced with tight cuts signal preserved with tight cuts when the precision is high How does collection time scale with precision? Probably faster than linear

Pixel geometry. These inner two layers provide the projection precision 2.5 cm radius 8 cm radius Inner layer Outer layer End view One of two half cylinders 20 cm  coverage +-1 total 40 ladders

Topics Mechanical trade offs in achieving the highest pointing precision Development work addressing mechanical precision and stability. Mechanical construction progress

vertex projection from two points detector layer 1 detector layer 2 pointing resolution = (13  19GeV/p  c)  m from detector position error from coulomb scattering r2r2 r1r1 true vertex perceived vertex xx xx vv r2r2 r1r1 true vertex perceived vertex vv mm expectations for the HFT pixels first pixel layer more than 3 times better than anyone else

development of spatial map Bob Connors Spiros Margetis Yifei Zhang touch probe 2-3  m (xyz) and visual 2-3  m (xy) 50  m (z) active volume: huge 10 gm touch probe force visual sub micron (xyz) repeatability 5  m accuracy over active volume no touch probe active volume: 30 in X 30 in X 12 in MEMOSTAR3, 30  m pitch

Mechanical Stability Movement from temperature changes Movement from humidity changes Deflection from gravity Vibration movement from mounts in STAR Movement induced by cooling air –how much air is required –vibration and static displacement Once the pixel positions are measured will they stay in the same place to within 20 µm? Issues that must be addressed:

Stability requirement drives design choices The detector ladders are thinned silicon, on a flex kapton/aluminum cable The large CTE difference between silicon and kapton is a potential source of thermal induced deformation even with modest deg C temperature swings Two methods of control –ALICE style carbon composite sector support beam with large moment of inertia –Soft decoupling adhesive bonding ladder layers

Ladder design with soft adhesive (6 psi shear modulus) cable bundle drivers pixel chips adhesive wire bonds capacitors adhesive composite backer kapton flex cable adhesive: 3M 200MP 2 mil, film adhesive

FEA analysis showing bi-metal thermally induced deformation ladder cross section short direction rigid bond 500 micron deformation 20 deg C temperature change soft adhesive 4.3 micron deformation

FEA analysis of thermally induced deformation of sector beam FEA shell elements Shear force load from ladders 20 deg temperature rise Soft adhesive coupling 200 micron carbon composite beam end cap reinforcement Maximum deformation 9 microns (30 microns if no end cap)

FEA analysis - sector beam deformation – gravity load FEA shell analysis 120 micron wall thickness composite beam gravity load includes ladders maximum structure deformation 4 microns ladder deformation only 0.6 microns

Air cooling of silicon detectors - CFD analysis air flow path – flows along both inside and outside surface of the sector Silicon power: 100 mW/cm 2 (~ power of sunlight) 240 W total Si + drivers

Air cooling – CFD analysis air flow velocity 9-10 m/s maximum temperature rise above ambient: 12 deg C sector beam surface – important component to cooling dynamic pressure force 1.7 times gravity stream lines with velocity silicon surface temperature velocity contours

vibration modes – preliminary – better composite numbers available 229 Hz 316 Hz 224 Hz 473 Hz 348 Hz

vibration modes with reinforced end cap The message –Lots of complicated modes close in frequency –End cap raises frequencies a bit 259 Hz 397 Hz 276 Hz 441 Hz 497 Hz

air velocity probe two positions shown capacitance vibration probe two positions shown carbon fiber sector beam wind tunnel setup to test vibration and displacement adjustable wall for air turn around air in air out C:\Documents and Settings\Howard Wieman\My Documents\aps project\mechanical\PXL phase 1 sept 2008\sector ph1 wind tunnel.SLDASM

wind tunnel, rapid prototype parts from model air flow control parts built with 3D printer parts built with SLA, stereolithography apparatus

wind tunnel

capacitive probe vibration measurements air velocity 2.7 m/s position signal, 25  m/volt air velocity 9.5 m/s position signal, 25  m/volt log FFT, peak at 135 Hz

Ladder vibration induced by cooling air system resolution limit all errors desired vibration target required air velocity 18 mph no reinforcement at the end

-167 µm 6 µm 17 µm -179 µm -248 µm measured static deformation from 9 m/s air flow -156 µm -163 µm -113 µm 9 µm 11 µm 1 µm open end reinforced end

measured vibration (RMS) induced by 9 m/s air flow 13 µm 14 µm 4 µm 6 µm 8 µm 3 µm 2 µm 11 µm 4 µm open end reinforced end

Vibration from STAR support, accelerometer measurement detector vibration from STAR support < 0.1 micron RMS

prototype design being built

PIXEL mass breakdown

Development of sector beam and ladder fabrication Eric Anderssen and Tom Johnson have been working on fabrication methods for: –Sector Beam –and Ladders Produced sample beams, 244  m thick, 7 ply, 21 gm expected ladder mass 7.5 gm ladders sector beam

ladder to sector out2 bond fixture in the shops ladder to out2 bond fixture.SLDASM (designed to allow ladder replacement)

sector chuck parts locating pin MMC 8472A11.SLDPRT bullet nose liner MMC 31335A51, 1 of 3 bullet nose aligning pin MMC 31335A11, 1 of 2 bullet nose diamond aligning pin MMC 31335A311.5 in post hex MMC 91780A361, 1 of 4 sector chuck out2 base.SLDPRT sector chuck out2 cap.SLDPRT plunger pin 1lb MMC 3360A560, 1 of 2 locating pin diamond MMC 8472A19.SLDPRT ¼-20 x 1.5 in, 1 of 4 ¼-20 x 1 in, 1 of 2 z locator.SLDPRT

ladder chuck parts ladder chuck handle.SLDPRT, 1 of 2 plunger pin 3 lb MMC 3360A330, 1 of 4 ladder chuck.SLDPRT ¼-20 x 1in, 1 of 4 ladder chuck.SLDASM

out2 silk screen assembly for applying glue that holds ladder to the sector stainless surface 25 mil above aluminum surface out2 silkscreen frame.SLDPRT sized for 2 mil bond line between stainless and aluminum this surface is initially shimmed by 20 mils to be 5 mils below the stainless surface. This is to permit future adjustment

ladder assembly fixture 3/8 OD tube connection to vacuum ¾ ID tube connection to 1 gallon vacuum ballast tank vacuum release valve for hold down of the vacuum chucks vacuum distribution manifold vacuum chuck system for placing chips and other ladder parts

YASDA Milling machine with dove tail sector mount

sector gluing fixture base

sector gluing fixture cap

conclusion - next major mechanical effort Build up full cylinder with heated dummy ladders and thermal test in a full size support cylinder with cooling air Check cooling and position stability

sensitivity to multiple coulomb scattering r2r2 rr1r1 mm dvdv d2d2 detector layer 1 detector layer 2 beam path true vertex perceived vertex worst place for mass is at the first layer error in position from scattering at r

ladder fixture ladder fixture.SLDASM vacuum chuck system for placing chips and other ladder parts