Sullivan PreCalculus Section 4

Slides:



Advertisements
Similar presentations
7.2 – Exponential Change and Separable Differential Equations © 2010 Pearson Education, Inc. All rights reserved Separable Differential Equations.
Advertisements

Section 6.7 – Financial Models
Differential Equations Definition A differential equation is an equation involving derivatives of an unknown function and possibly the function itself.
Exponential and Logarithmic Functions and Equations
6.2 Growth and Decay Law of Exponential Growth and Decay C = initial value k = constant of proportionality if k > 0, exponential growth occurs if k < 0,
Copyright © Cengage Learning. All rights reserved.
Modeling with Exponential and Logarithmic Functions.
Diff EQs 6.6. Common Problems: Exponential Growth and Decay Compound Interest Radiation and half-life Newton’s law of cooling Other fun topics.
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
Section 5.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models.
Clicker Question 1 The radius of a circle is growing at a constant rate of 2 inches/sec. How fast is the area of the circle growing when the radius is.
4.5 Modeling with Exponential and Logarithmic Functions.
3.3 – Applications: Uninhibited and Limited Growth Models
OBJECTIVES: FIND EQUATIONS OF POPULATION THAT OBEY THE LAW OF UNINHIBITED GROWTH AND DECAY USE LOGISTIC MODELS Exponential Growth and Decay; Logistic Models.
Exponential Growth and Decay Models; Logistic Growth and Decay Models
Exponential Growth and Decay Newton’s Law Logistic Growth and Decay
Exponential Growth and Decay
Exponential Growth and Decay February 28, P 404 Problem 5 The population of a colony of mosquitoes obeys the law of uninhibited growth. If there.
Warmup 1) 2). 6.4: Exponential Growth and Decay The number of bighorn sheep in a population increases at a rate that is proportional to the number of.
6.4 Exponential Growth and Decay Greg Kelly, Hanford High School, Richland, Washington Glacier National Park, Montana Photo by Vickie Kelly, 2004.
1.3 Exponential Functions. Exponential Growth Exponential Decay Applications The Number e …and why Exponential functions model many growth patterns. What.
Exponential Growth and Decay 6.4. Exponential Decay Exponential Decay is very similar to Exponential Growth. The only difference in the model is that.
4.8 Exponential and Logarithmic Models
Exponentials and Logarithms
6.4 Exponential Growth and Decay. What you’ll learn about Separable Differential Equations Law of Exponential Change Continuously Compounded Interest.
Imagine this much bacteria in a Petri dish Now this amount of the same bacteria Assuming that each bacterium would reproduce at the same rate, which dish.
Exponential and Logarithmic Functions. Exponential Functions Example: Graph the following equations… a) b)
Chapter 3 – Differentiation Rules
Differential Equations Copyright © Cengage Learning. All rights reserved.
EXPONENTIAL GROWTH & DECAY; Application In 2000, the population of Africa was 807 million and by 2011 it had grown to 1052 million. Use the exponential.
9.4 Exponential Growth & Decay
Exponential & Logarithmic Functions 1-to-1 Functions; Inverse Functions Exponential Functions Logarithmic Functions Properties of Logarithms; Exponential.
Exponential Modeling Section 3.2a.
Determining Age of Very Old Objects
7.4 B – Applying calculus to Exponentials. Big Idea This section does not actually require calculus. You will learn a couple of formulas to model exponential.
12/18/2015 Perkins Honors Precalculus Day 7 Section 4.7.
Growth and Decay Exponential Models.
Advanced Precalculus Notes 4.8 Exponential Growth and Decay k > 0 growthk < 0 decay.
4.8: Newton’s Law and Half Life. An archaeological dig was conducted on the grounds of Methacton HS, where dinosaur remains were found, containing 1.67%
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 6.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and.
Section 6.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models.
Section 5.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models.
Exponential Growth and Decay; Newton’s Law; Logistic Models
Any population of living creatures increases at a rate that is proportional to the number present (at least for a while). Other things that increase or.
Modeling using Logarithms
6.7 Growth and Decay. Uninhibited Growth of Cells.
Warm Up Dec. 19 Write and solve the differential equation that models the verbal statement. Evaluate the solution at the specified value. The rate of change.
Aim: Growth & Decay Course: Calculus Do Now: Aim: How do we solve differential equations dealing with Growth and Decay Find.
Exponential and Logarithmic Functions. Exponential Functions Example: Graph the following equations… a) b)
6.2 Solving Differential Equations Modeling – Refers to finding a differential equation that describes a given physical situation.
3.8 - Exponential Growth and Decay. Examples Population Growth Economics / Finance Radioactive Decay Chemical Reactions Temperature (Newton’s Law of Cooling)
6.4 Exponential Growth and Decay. The number of bighorn sheep in a population increases at a rate that is proportional to the number of sheep present.
6.4 Applications of Differential Equations. I. Exponential Growth and Decay A.) Law of Exponential Change - Any situation where a quantity (y) whose rate.
6.4 Exponential Growth and Decay Law of Exponential Change Continuously Compounded Interest Radioactivity Newton’s Law of Cooling Resistance Proportional.
Exponential and Logarithmic Functions 4 Copyright © Cengage Learning. All rights reserved.
Differential Equations
3.1 Growth and Decay.
4.7 Growth and Decay.
6.4 Exponential Growth and Decay, p. 350
6.2 Exponential Growth and Decay
7.4 Exponential Growth and Decay
Exponential Growth and Decay; Logistic Models
6.4 Applications of Differential Equations
Exponential Growth and Decay; Logistic Growth and Decay
Section 4.8: Exponential Growth & Decay
Section 4.8: Exponential Growth & Decay
4.7 Growth and Decay.
Packet #16 Modeling with Exponential Functions
Exponential Growth and Decay; Newton’s Law; Logistic Models
6.2 Differential Equations: Growth and Decay (Part 2)
Presentation transcript:

Sullivan PreCalculus Section 4 Sullivan PreCalculus Section 4.8 Exponential Growth and Decay; Newton’s Law; Logistic Models Objectives of this Section Find Equations of Populations That Obey the Law of Uninhibited Growth Find Equations of Populations That Obey the Law of Decay Use Newton’s Law of Cooling Use Logistic Growth Models

Many natural phenomena have been found to follow the law that an amount A varies with time t according to the function: If k > 0, there is uninhibited growth. If k < 0, there is decay. A(0) = A0 represents the original amount

The half-life of Uranium-234 is 200,000 years The half-life of Uranium-234 is 200,000 years. If 50 grams of Uranium-234 are present now, how much will be present in 1000 years. NOTE: The half-life of is the time required for half of radioactive substance to decay.

( ) u t T e k = + - < Newton’s Law of Cooling kt = + - < T : Temperature of surrounding medium uo : Initial temperature of object k : A negative constant

A cup of hot chocolate is 100 degrees Celsius A cup of hot chocolate is 100 degrees Celsius. It is allowed to cool in a room whose air temperature is 22 degrees Celsius. If the temperature of the hot chocolate is 85 degrees Celsius after 4 minutes, when will its temperature be 60 degrees Celsius?

Logistic Growth Model where a, b, and c are constants with c > 0 and b > 0. The constant c is called the carrying capacity.

What is the carrying capacity? Graph the function using a graphing utility.

What was the initial amount of bacteria?

When will the amount of bacteria be 300 grams?