Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 17 Auction-based.

Slides:



Advertisements
Similar presentations
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 7 Reconfiguration,
Advertisements

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 1 When.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 13 Defining.
Spectrum Sensing and Identification
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 11 Information.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 10 User.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 5 Spectrum.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 6 Agile.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 9 Fundamentals.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 2 Radio.
High Speed Networks Budapest University of Technology and Economics High Speed Networks Laboratory General Distributed.
Supply and Demand in Search of a Market: The Case of Secondary Spectrum Markets Scott Wallsten June 2, 2011 Spectrum Markets: Challenges.
Chapter 7 1 Cellular Telecommunications Systems Abdulaziz Mohammed Al-Yami
Software-defined networking: Change is hard Ratul Mahajan with Chi-Yao Hong, Rohan Gandhi, Xin Jin, Harry Liu, Vijay Gill, Srikanth Kandula, Mohan Nanduri,
Combinatorial auctions Vincent Conitzer v( ) = $500 v( ) = $700.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Federal Communications Commission NSMA Spectrum Management Conference May 20, 2008 Market Based Forces and the Radio Spectrum By Mark Bykowsky, Kenneth.
CROWN “Thales” project Optimal ContRol of self-Organized Wireless Networks WP1 Understanding and influencing uncoordinated interactions of autonomic wireless.
Preference Elicitation Partial-revelation VCG mechanism for Combinatorial Auctions and Eliciting Non-price Preferences in Combinatorial Auctions.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
1 Sealed Bid Multi-object Auctions with Necessary Bundles and its Application to Spectrum Auctions ver. 1.0 University of Tokyo 東京大学 松井知己 Tomomi Matsui.
Side Constraints and Non-Price Attributes in Markets Tuomas Sandholm Carnegie Mellon University Computer Science Department [Paper by Sandholm & Suri 2001]
Algorithmic Applications of Game Theory Lecture 8 1.
RadComms 2014: Innovations in Spectrum Management Lynne Fancy Senior Director Spectrum Development and Operations Industry Canada September 2014.
1 Teck-Hua Ho April 18, 2006 Auction Design I. Economic and Behavioral Foundations of Pricing II. Innovative Pricing Concepts and Tools III. Internet Pricing.
Dynamic Spectrum Management: Optimization, game and equilibrium Tom Luo (Yinyu Ye) December 18, WINE 2008.
CS541 Advanced Networking 1 Spectrum Sharing in Cognitive Radio Networks Neil Tang 3/23/2009.
1 A General Auction-Based Architecture for Resource Allocation Weidong Cui, Matthew C. Caesar, and Randy H. Katz EECS, UC Berkeley {wdc, mccaesar,
*Sponsored in part by the DARPA IT-MANET Program, NSF OCE Opportunistic Scheduling with Reliability Guarantees in Cognitive Radio Networks Rahul.
1 Teck-Hua Ho April 22, 2006 Auction Design I. Economic and Behavioral Foundations of Pricing II. Innovative Pricing Concepts and Tools III. Internet Pricing.
Pricing What Can Pricing Do In Wireless Networks? Jianning Mai and Lihua Yuan
Exchanges = markets with many buyers and many sellers Let’s consider a 1-item 1-unit exchange first.
11/08/2009 Princeton University 1 Sharing Mart: An Experimental Platform for Socio-Technological Networks Research Dr. Hazer Inaltekin Department of Electrical.
An Algorithm for Optimal Winner Determination in Combinatorial Auctions Tuomas Sandholm Computer Science Department, Carnegie Mellon University, 5000 Forbes.
Multi-unit auctions & exchanges (multiple indistinguishable units of one item for sale) Tuomas Sandholm Computer Science Department Carnegie Mellon University.
Wei Dong* Swati Rallapalli* Lili Qiu* K.K. Ramakrishnan + Yin Zhang* *The University of Texas at Austin + Rutgers University Swati Rallapalli IEEE INFOCOM.
Fast Spectrum Allocation in Coordinated Dynamic Spectrum Access Based Cellular Networks Anand Prabhu Subramanian*, Himanshu Gupta*,
2 August 2001www.spectrumreview.radio.gov.uk1 Independent review of radio spectrum management: presentation to the Fixed Links Consultative Committee (Radio.
A General Framework for Wireless Spectrum Auctions Sorabh Gandhi, Lili Cao, Haitao Zheng, Subhash Suri ( Department of Computer Science University of California,
COLLABORATIVE SPECTRUM MANAGEMENT FOR RELIABILITY AND SCALABILITY Heather Zheng Dept. of Computer Science University of California, Santa Barbara.
Overcast: Reliable Multicasting with an Overlay Network CS294 Paul Burstein 9/15/2003.
Implementing e-Auctions with Sharemind Md. Sadek Ferdous 12th November 2008.
Wireless Networks Breakout Session Summary September 21, 2012.
Combinatorial Auctions By: Shai Roitman
June 21, 2007 Minimum Interference Channel Assignment in Multi-Radio Wireless Mesh Networks Anand Prabhu Subramanian, Himanshu Gupta.
TRUST: A General Framework for Truthful Double Spectrum Auctions Xia Zhou Heather Zheng (University of California, Santa Barbara) Presenter: Emil Huang.
MAP: Multi-Auctioneer Progressive Auction in Dynamic Spectrum Access Lin Gao, Youyun Xu, Xinbing Wang Shanghai Jiaotong University.
Strategyproof Auctions For Balancing Social Welfare and Fairness in Secondary Spectrum Markets Ajay Gopinathan, Zongpeng Li University of Calgary Chuan.
TRUST:A General Framework for Truthful Double Spectrum Auctions Xia Zhou and Heather Zheng Department of Computer Science, University of California, Santa.
EasyBid: Enabling Cellular Offloading via Small Players Zhixue Lu 1, Prasun Sinha 1 and R. Srikant 2 1 The Ohio State University 2 Univ. of Illinois at.
Advanced Spectrum Management in Multicell OFDMA Networks enabling Cognitive Radio Usage F. Bernardo, J. Pérez-Romero, O. Sallent, R. Agustí Radio Communications.
A Study of Central Auction Based Wholesale Electricity Markets S. Ceppi and N. Gatti.
Spectrum Trading in Cognitive Radio Networks: A Contract-Theoretic Modeling Approach Lin Gao, Xinbing Wang, Youyun Xu, Qian Zhang Shanghai Jiao Tong University,
Steffen Staab 1WeST Web Science & Technologies University of Koblenz ▪ Landau, Germany Network Theory and Dynamic Systems Auctions.
ASSIGNMENT, DISTRIBUTION AND QOS PROVISIONING IN COMMUNICATION NETWORKS.
How wireless networks scale: the illusion of spectrum scarcity David P. Reed [ Presented at International Symposium on Advanced.
Ruihao Zhu and Kang G. Shin
Status & Challenges Interoperability and global integration of communication infrastructure & service platform Fixed-mobile convergence to achieve a future.
Dynamic Spectrum Access/Management Models Exclusive-Use Model Shared-Use Model.
Partially Overlapped Channels Not Considered Harmful Arunesh Mishra, Vivek Shrivastava, Suman Banerjee, William Arbaugh (ACM SIGMetrics 2006) Slides adapted.
1 A Proportional Fair Spectrum Allocation for Wireless Heterogeneous Networks Sangwook Han, Irfanud Din, Woon Bong Young and Hoon Kim ISCE 2014.
مهندسي سيستم‌هاي تجارت الکترونیکی Electronic Commerce System Engineering (ECSE) رشته مهندسي فناوري اطلاعات- گرايش تجارت الکترونیکی دوره کارشناسی ارشد حضوری.
Impact of Interference on Multi-hop Wireless Network Performance
Near-Optimal Spectrum Allocation for Cognitive Radios: A Frequency-Time Auction Perspective Xinyu Wang Department of Electronic Engineering Shanghai.
Xiangtong Qi The Hong Kong University of Science and Technology
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Xinbing Wang*, Qian Zhang**
Market-based Dynamic Task Allocation in Mobile Surveillance Systems
Horizon: Balancing TCP over multiple paths in wireless mesh networks
Presentation transcript:

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 17 Auction-based spectrum markets in cognitive radio networks

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 2 Outline Rethinking Spectrum Auctions On-demand Spectrum Auctions Economic-Robust Spectrum Auctions Double Spectrum Auctions for Multi-party Trading Chapter Summary Further Reading

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Recent Spectrum Auction Activities 1. Allocate spectrum statically in long-term (10 years) national leases 2. Take months/years to complete 3. Expensive 4. Controlled by incumbents (Verizon, AT&T)

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Addressing Inefficient Spectrum Distribution Legacy wireless providers own the majority of spectrum But cannot fully utilize it New wireless providers are dying for usable spectrum But have to crowd into limited unlicensed bands Market-based Spectrum Trading Sellers Buyers

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Rethinking Spectrum Auctions eBay in the Sky On-demand spectrum auctions Short-term, local area, low-cost No need to pay for 10 years of spectrum usage across the entire west-coast Support small players and new market entrants Stimulate fast innovations Dynamic Spectrum Auctions

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Why Auctions? Auctioneers periodically auction spectrum based on user bids Dynamically discover prices based on demands Users request spectrum when they need it Match traffic dynamics Flexible and cost-effective Dynamic Spectrum Auctions

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Summary of Challenges Multi-unit auctions Multiple winners Each assigned with a portion of spectrum Subject to interference constraints Combinatorial constraints among bidders Complexity grows exponentially with the number of bidders NP-hard resource allocation problem Can we design low-complexity and yet efficient auction solutions for large scale systems? Large # of bidders Real-time auctions

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 8 Outline Rethinking Spectrum Auctions On-demand Spectrum Auctions Economic-Robust Spectrum Auctions Double Spectrum Auctions for Multi-party Trading Chapter Summary Further Reading

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) System Overview Piecewise Linear Price Demand bids– a compact and yet highly expressive bidding format UserAuctioneer Uniform vs. Discriminatory pricing models – tradeoffs between efficiency and fairness Bidding Pricing Model Fast auction clearing algorithms for both pricing models Allocation (clearing) How do users bid? How to set prices? how to handle the bids to efficiently maximize revenue?

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Fast Auction Clearing The problem is NP-hard because: Pair-wise combinatorial interference constraints What if: convert the interference constraints into a set of linear constraints Functions of Xi: The amount of spectrum assigned to bidder i Must be as strict as before Reduce the problem into variants of Linear Programming Problem Can do this in a central controller We propose: Node-L constraints Original interference constraints

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Analytical Bounds CAUP Clearing Algorithm for Uniform Pricing CADP Clearing Algorithm for Discriminatory Pricing Revenue efficiency Complexity When the conflict graph is a tree Theoretical bounds

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) As a Result….. Using a normal desktop computer: An auction with 4000 bidders takes 90 seconds 20,000 time faster than the optimal solution If <100 bidders, only 15% revenue degradation over the optimal solution Using a normal desktop computer: An auction with 4000 bidders takes 90 seconds 20,000 time faster than the optimal solution If <100 bidders, only 15% revenue degradation over the optimal solution

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 13 Outline Rethinking Spectrum Auctions On-demand Spectrum Auctions Economic-Robust Spectrum Auctions Double Spectrum Auctions for Multi-party Trading Chapter Summary Further Reading

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Bidder Participation Fast Auction Clearing Efficient Dynamic Spectrum Auctions

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) VERITAS: Truthful and Efficient Spectrum Auctions VERITAS-Allocation: Bid-dependent greedy allocation Best known polynomial-time channel allocation schemes are greedy Enable spatial reuse Within a provable distance (Δ: max conflict degree) to the optimal auction efficiency VERITAS-Pricing: Charge every winner i, the bid of its critical neighbor C(i) Critical Neighbor: The neighbor which makes the number of channels available for i drop to 0 Finding Critical Neighbor for i run allocations on {B/bi} (B: set of bids) Ensure truthfulness

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) VERITAS Truthfulness Theorem: VERITAS spectrum auction is truthful, achieves pareto optimal allocations, and runs in polynomial time of O(n 3 k) Proof sketch – Monotone allocations – Monotone allocations: If the bidder wins with bid b, it also wins with b > b when others bids are fixed – Critical value – Critical value: Given a bid-set B, a critical value exists for every allocated bidder – Truthfulness – Truthfulness: If we charge every bidder by its critical value, no bidder has an incentive to lie

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) VERITAS Extensions Support various objective functions VERITAS allocation scheme can sort on broad class of functions of bids The auctioneer can customize based on its needs Bidding Formats Range Format: Every bidder i specifies parameter di, and accepts any number of channels in the range (0, di) Contiguous Format: Bidder requests the channels allocated to be contiguous

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) A Closer Look at VERITAS Revenue curve not monotonically increasing with # of channels auctioned Effect of the pricing scheme Successful auctions require sufficient level of competition Enforce competition Choose the proper # of channels to auction 13 Choosing the number of channels to be auctioned to maximize revenue

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 19 Outline Rethinking Spectrum Auctions On-demand Spectrum Auctions Economic-Robust Spectrum Auctions Double Spectrum Auctions for Multi-party Trading Chapter Summary Further Reading

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Enabling Trading by Double Auctions Sellers Buyers Bids Double Auctions: Sellers and buyers are bidders Sellers bid: the minimal price it requires to sell a channel Buyers bid: the maximal price it is willing to pay for a channel Auctioneer as the match maker Select winning buyers and sellers Winners & Prices

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Need Judicious Auction Designs Bids Sellers Buyers Bids Need to achieve 3 economic properties Budget balance: Payment to sellers <= Charge to buyers Individual rationality: Buyer pays less than its bid Seller receives more than its bid Truthfulness: bid the true valuation Need to provide efficient spectrum distribution $$

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Existing Solutions No Longer Apply Truthfuln ess Individual Rationality Budget Balance Spectrum Reuse McAfees Double Auction X VCG Double Auction XX Extension of Single-sided Truthful Auction X Our Goal

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Design Guidelines Start from the McAfee design: the most popular truthful double auction design Achieve all three economic properties without spectrum reuse Extend McAfee to assign multiple buyers to each single seller Enable spectrum reuse among buyers Design the procedure judiciously to maintain the three economic properties

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) McAfee Double Auctions Achieve budget balance, truthfulness, individual rationality without spectrum reuse S 1 S 2 … S k-1 S k S k+1 … S m S 1 S 2 … S k-1 S k S k+1 … S m B 1 B 2 … B k-1 B k B k+1 … B n B 1 B 2 … B k-1 B k B k+1 … B n Sellers bidsBuyers bids (k-1) winning buyers, each paying B k (k-1) winning sellers, each getting paid S k Sacrifice one transaction

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Enabling Spectrum Reuse Map a group of non-conflicting buyers to one seller Sellers bidsBuyers bids S 1 S 2 … S k-1 S k S k+1 … S m S 1 S 2 … S k-1 S k S k+1 … S m B 1 B 2 … B k-1 B k B k+1 … B n B 1 B 2 … B k-1 B k B k+1 … B n Buyer Group G1 Buyer Group G2 Buyer Group G3

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) TRUST: Auction Design Form buyer group Bid- independent Group Formation Decide the bid of each buyer group; Apply McAfee Decide the bid of each buyer group; Apply McAfee Buyer group is bid = The lowest bid in group i * #of bidders in group i Charge individuals in a winning buyer group Uniform pricing within one winning buyer group Theorem 1. TRUST is ex-post budget balanced, individual rational, and truthful.

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 27 Chapter 17 Summary Spectrum is not going to be free (most of it) Economics must be integrated into spectrum distributions Networking problem: on-demand spectrum allocation Economic problem: truthful (economic-robust) design Existing solutions fail when enabling spectrum reuse Many ongoing efforts to make this happen in practice

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) References & Further Readings Papers discussed in this chapter: S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, A general framework for wireless spectrum auctions, in Proc. of IEEE DySPAN, X. Zhou, S. Gandhi, S. Suri, and H. Zheng, eBay in the sky: Strategy-proof wireless spectrum auctions, in Proc. of MobiCom, Sept X. Zhou and H. Zheng, TRUST: A general framework for truthful double spectrum auctions, in Proc. of INFOCOM, April Further readings: S. Olafsson, B. Glower, and M. Nekovee, Future management of spectrum, BT Technology Journal, vol. 25, no. 2, pp. 52–63, Ofcom, Spectrum framework review, June M. Buddhikot et. al., Dimsumnet: New directions in wireless networking using coordinated dynamic spectrum access, in Proc. of IEEE WoWmoM05, June T. K. Forde and L. E. Doyle, A combinatorial clock auction for OFDMA based cognitive wireless networks, in Proc. of 3d International Conference on Wireless Pervasive Computing, May W. Vickery, Counterspeculation, auctions and competitive sealed tenders, Journal of Finance, vol. 16, pp. 8–37, D. Lehmann, L. O´callaghan, and Y. Shoham, Truth revelation in approximately efficient combinatorial auctions, J. ACM, vol. 49, no. 5, pp. 577–602, A. Mualem and N. Nisan, Truthful approximation mechanisms for restricted combinatorial auctions: extended abstract, in Eighteenth national conference on Artificial intelligence, pp. 379–384,

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) References & Further Readings R. P. McAfee, A dominant strategy double auction, Journal of Economic Theory, vol. 56, pp. 434–450, April P. Subramanian, H. Gupta, S. R. Das, and M. M. Buddhikot, Fast spectrum allocation in coordinated dynamic spectrum access based cellular networks, in Proc. of IEEE DySPAN, November Spectrum Bridge Inc., P. Subramanian, M. Al-Ayyoub, H. Gupta, S. Das, and M. M. Buddhikot, Near optimal dynamic spectrum allocation in cellular networks, in Proc. Of IEEE DySPAN, Y. Xing, R. Chandramouli, and C. Cordeiro, Price dynamics in competitive agile spectrum access markets, IEEE Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 613–621, D. Niyato, E. Hossein, and Z. Han, Dynamics of multiple-seller and multiple-buyer spectrum trading in cognitive radio networks: A game theoretic modeling approach, IEEE Transactions on Mobile Computing, vol. 8, no. 8, pp. 1009–1021, V. Rodriguez, K. Mossner, and R. Tafazoli, Auction-based optimal bidding, pricing and service priorities for multi- rate, multi-class CDMA, in Proc. Of IEEE PIMRIC, pp. 1850–1854, September J. Huang, R. Berry, and M. L. Honig, Auction-based spectrum sharing, ACM Mobile Networks and Applications, vol. 11, no. 3, pp. 405–618,