02220 Distributed Systems: Computer Networking Basics Alessio Di Mauro Xenofon Fafoutis

Slides:



Advertisements
Similar presentations
Transport Layer3-1 Transport Overview and UDP. Transport Layer3-2 Goals r Understand transport services m Multiplexing and Demultiplexing m Reliable data.
Advertisements

Introduction 1-1 Chapter 3 Transport Layer Intro and Multiplexing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Dr. Philip Cannata 1 Computer Networking. Dr. Philip Cannata 2.
Summer Workshop on Cyber Security Computer Networks Security (Part 1) Dr. Hamed Mohsenian-Rad University of California at Riverside and Texas Tech University.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
Computer Communication Digital Communication in the Modern World Transport Layer Multiplexing, UDP
Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS591 – Wireless & Network Security Lecture.
Introduction to Transport Layer. Transport Layer: Motivation A B R1 R2 r Recall that NL is responsible for forwarding a packet from one HOST to another.
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Lecture 8 Chapter 3 Transport Layer
Lecture 3 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Introduction to the Application Layer Computer Networks Computer Networks Spring 2012 Spring 2012.
1-1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet.
1 Computer Networks Transport Layer Protocols. 2 Application-layer Protocols Application-layer protocols –one “piece” of an app –define messages exchanged.
What’s the Internet: “nuts and bolts” view
Dr. Philip Cannata 1 Principles of Network Applications.
Introduction 1 Lecture 5 Application Layer slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Chapter 2, slide: 1 CS 372 – introduction to computer networks* Monday June 28 Announcements: r Lab 1 is due today r Lab 2 is posted today and is due next.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Throughput: Internet scenario
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction Protocol “layers” Networks are complex, with many “pieces”:  hosts  routers  links of various media  applications  protocols  hardware,
What makes a network good? Ch 2.1: Principles of Network Apps 2: Application Layer1.
ECE 4400:427/527 - Computer Networks Spring 2015 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 3: Network Architectures Dr. Nghi.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 12 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network LayerII-1 RSC Part III: Transport Layer 1. Basic Concepts Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
Sockets process sends/receives messages to/from its socket
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
Chapter 3 Transport Layer
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Transport Layer1 Ram Dantu (compiled from various text books)
Lecture91 Administrative Things r Return homework # 1 r Review some problems in homework # 1 r Questions about grading? Yona r WebCT for CSE245 is working!
1 End-user Protocols, Services and QoS. 2 Layering: logical communication application transport network link physical application transport network link.
CS 3830 Day 13 Introduction 1-1. Announcements r Quiz 3: Wednesday, Oct 10 r Prog3 due Wednesday, Oct 10 Transport Layer 3-2.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
1 ECE453 - Introduction to Computer Networks Lecture 1: Introduction.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
MULTIPLEXING/DEMULTIPLEXING, CONNECTIONLESS TRANSPORT.
Marina Papatriantafilou – Introduction to computer communication Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Chapter 1:Introduction Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Advanced Computer Networks.
@Yuan Xue CS 283Computer Networks Spring 2011 Instructor: Yuan Xue.
Chapter 7 Application Layer 1 Some of the slides in this chapter are courtesy of Profs. Kurose/Ross and others.
Introduction 1-1 source application transport network link physical HtHt HnHn M segment HtHt datagram destination application transport network link physical.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Transport Layer3-1 Transport Layer Never take life seriously. Nobody gets out alive anyway.
Computer Networks Dr. Adil Yousif CS Lecture 1.
Introduction to Networks
Chapter 3 Transport Layer
Slides taken from: Computer Networking by Kurose and Ross
Introduction to Networks
Chapter 2 Introduction Application Requirements VS. Transport Services
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
CSCD 330 Network Programming
Chapter 3 Transport Layer
Presentation transcript:

02220 Distributed Systems: Computer Networking Basics Alessio Di Mauro Xenofon Fafoutis

Introduction 1-2 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Introduction What’s the Internet: “nuts and bolts” view  millions of connected computing devices:  hosts = end systems  running network apps  communication links  fiber, copper, radio, satellite  Packet switches: forward packets (chunks of data)  routers and switches wired links wireless links router mobile network global ISP regional ISP home network institutional network smartphone PC server wireless laptop 1-3

Introduction What’s a protocol? human protocols:  “what’s the time?”  “I have a question”  introductions … specific msgs sent … specific actions taken when msgs received, or other events network protocols:  machines rather than humans  all communication activity in Internet governed by protocols protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt 1-4

Introduction a human protocol and a computer network protocol: Hi Got the time? 2:00 TCP connection response Get time TCP connection request What’s a protocol? 1-5

Introduction A closer look at network structure:  network edge:  hosts: clients and servers  servers often in data centers  access networks, physical media: wired, wireless communication links  network core:  interconnected routers  network of networks mobile network global ISP regional ISP home network institutional network 1-6

Introduction  mesh of interconnected routers  packet-switching: hosts break application-layer messages into packets  forward packets from one router to the next, across links on path from source to destination The network core 1-7

Introduction Protocol “layers” Networks are complex, with many “pieces”:  hosts  routers  links of various media  applications  protocols  hardware, software Question: is there any hope of organizing structure of network? …. or at least our discussion of networks? 1-8

Introduction Organization of air travel  a series of steps ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing ticket (complain) baggage (claim) gates (unload) runway landing airplane routing 1-9

Introduction ticket (purchase) baggage (check) gates (load) runway (takeoff) airplane routing departure airport arrival airport intermediate air-traffic control centers airplane routing ticket (complain) baggage (claim gates (unload) runway (land) airplane routing ticket baggage gate takeoff/landing airplane routing Layering of airline functionality layers: each layer implements a service  via its own internal-layer actions  relying on services provided by layer below 1-10

Introduction Why layering? dealing with complex systems:  explicit structure allows identification, relationship of complex system’s pieces  layered reference model for discussion  modularization eases maintenance, updating of system  change of implementation of layer’s service transparent to rest of system  e.g., change in gate procedure doesn’t affect rest of system  layering disadvantages? 1-11

Introduction Internet protocol stack  application: supporting network applications  FTP, SMTP, HTTP  transport: process-process data transfer  TCP, UDP  network: routing of datagrams from source to destination  IP, routing protocols  link: data transfer between neighboring network elements  Ethernet, (WiFi), PPP  physical: bits “on the wire” application transport network link physical 1-12

Introduction ISO/OSI reference model  presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions  session: synchronization, checkpointing, recovery of data exchange  Internet stack “missing” these layers!  these services, if needed, must be implemented in application  needed? application presentation session transport network link physical 1-13

Introduction source application transport network link physical HtHt HnHn M segment HtHt datagram destination application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M network link physical link physical HtHt HnHn HlHl M HtHt HnHn M HtHt HnHn M HtHt HnHn HlHl M router switch Encapsulation message M HtHt M HnHn frame 1-14

Application Layer 2-15 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-16 Some network apps   web  text messaging  remote login  P2P file sharing  multi-user network games  streaming stored video (YouTube, Hulu, Netflix)  voice over IP (e.g., Skype)  real-time video conferencing  social networking  search  …

Application Layer 2-17 Creating a network app write programs that:  run on (different) end systems  communicate over network  e.g., web server software communicates with browser software no need to write software for network-core devices  network-core devices do not run user applications  applications on end systems allows for rapid app development, propagation application transport network data link physical application transport network data link physical application transport network data link physical

Application Layer 2-18 Application architectures possible structure of applications:  client-server  peer-to-peer (P2P)

Application Layer 2-19 Client-server architecture server:  always-on host  permanent IP address  data centers for scaling clients:  communicate with server  may be intermittently connected  may have dynamic IP addresses  do not communicate directly with each other client/server

Application Layer 2-20 P2P architecture  no always-on server  arbitrary end systems directly communicate  peers request service from other peers, provide service in return to other peers  self scalability – new peers bring new service capacity, as well as new service demands  peers are intermittently connected and change IP addresses  complex management peer-peer

Application Layer 2-21 Processes communicating process: program running within a host  within same host, two processes communicate using inter-process communication (defined by OS)  processes in different hosts communicate by exchanging messages client process: process that initiates communication server process: process that waits to be contacted  aside: applications with P2P architectures have client processes & server processes clients, servers

Application Layer 2-22 Sockets  process sends/receives messages to/from its socket  socket analogous to door  sending process shoves message out door  sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process Internet controlled by OS controlled by app developer transport application physical link network process transport application physical link network process socket

Application Layer 2-23 Addressing processes  to receive messages, process must have identifier  host device has unique 32- bit IP address  Q: does IP address of host on which process runs suffice for identifying the process?  identifier includes both IP address and port numbers associated with process on host.  example port numbers:  HTTP server: 80  mail server: 25  to send HTTP message to gaia.cs.umass.edu web server:  IP address:  port number: 80  A: no, many processes can be running on same host

Application Layer 2-24 App-layer protocol defines  types of messages exchanged,  e.g., request, response  message syntax:  what fields in messages & how fields are delineated  message semantics  meaning of information in fields  rules for when and how processes send & respond to messages open protocols:  defined in RFCs  allows for interoperability  e.g., HTTP, SMTP proprietary protocols:  e.g., Skype

Application Layer 2-25 What transport service does an app need? data integrity  some apps (e.g., file transfer, web transactions) require 100% reliable data transfer  other apps (e.g., audio) can tolerate some loss timing  some apps (e.g., Internet telephony, interactive games) require low delay to be “effective” throughput  some apps (e.g., multimedia) require minimum amount of throughput to be “effective”  other apps (“elastic apps”) make use of whatever throughput they get security  encryption, data integrity, …

Application Layer 2-26 Transport service requirements: common apps application file transfer Web documents real-time audio/video stored audio/video interactive games text messaging data loss no loss loss-tolerant no loss throughput elastic audio: 5kbps-1Mbps video:10kbps-5Mbps same as above few kbps up elastic time sensitive no yes, 100’s msec yes, few secs yes, 100’s msec yes and no

Application Layer 2-27 Internet transport protocols services TCP service:  reliable transport between sending and receiving process  flow control: sender won’t overwhelm receiver  congestion control: throttle sender when network overloaded  does not provide: timing, minimum throughput guarantee, security  connection-oriented: setup required between client and server processes UDP service:  unreliable data transfer between sending and receiving process  does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, orconnection setup, Q: why bother? Why is there a UDP?

Application Layer 2-28 Internet apps: application, transport protocols application remote terminal access Web file transfer streaming multimedia Internet telephony application layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (e.g., YouTube), RTP [RFC 1889] SIP, RTP, proprietary (e.g., Skype) underlying transport protocol TCP TCP or UDP

Transport Layer 3-29 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-30 Transport services and protocols  provide logical communication between app processes running on different hosts  transport protocols run in end systems  send side: breaks app messages into segments, passes to network layer  rcv side: reassembles segments into messages, passes to app layer  more than one transport protocol available to apps  Internet: TCP and UDP application transport network data link physical logical end-end transport application transport network data link physical

Transport Layer 3-31 Transport vs. network layer  network layer: logical communication between hosts  transport layer: logical communication between processes  relies on, enhances, network layer services 12 kids in Ann’s house sending letters to 12 kids in Bill’s house:  hosts = houses  processes = kids  app messages = letters in envelopes  transport protocol = Ann and Bill who demux to in- house siblings  network-layer protocol = postal service household analogy:

Transport Layer 3-32 Multiplexing/demultiplexing process socket use header info to deliver received segments to correct socket demultiplexing at receiver: handle data from multiple sockets, add transport header (later used for demultiplexing) multiplexing at sender: transport application physical link network P2P1 transport application physical link network P4 transport application physical link network P3

Transport Layer 3-33 How demultiplexing works  host receives IP datagrams  each datagram has source IP address, destination IP address  each datagram carries one transport-layer segment  each segment has source, destination port number  host uses IP addresses & port numbers to direct segment to appropriate socket source port #dest port # 32 bits application data (payload) other header fields TCP/UDP segment format

Transport Layer 3-34 Connectionless demultiplexing  recall: created socket has host-local port #: DatagramSocket mySocket1 = new DatagramSocket(12534);  when host receives UDP segment:  checks destination port # in segment  directs UDP segment to socket with that port #  recall: when creating datagram to send into UDP socket, must specify  destination IP address  destination port # IP datagrams with same dest. port #, but different source IP addresses and/or source port numbers will be directed to same socket at dest

Transport Layer 3-35 Connectionless demux: example DatagramSocket serverSocket = new DatagramSocket (6428); transport application physical link network P3 transport application physical link network P1 transport application physical link network P4 DatagramSocket mySocket1 = new DatagramSocket (5775); DatagramSocket mySocket2 = new DatagramSocket (9157); source port: 9157 dest port: 6428 source port: 6428 dest port: 9157 source port: 6428 dest port: 5775 source port: 5775 dest port: 6428

Transport Layer 3-36 Connection-oriented demux  TCP socket identified by 4-tuple:  source IP address  source port number  dest IP address  dest port number  demux: receiver uses all four values to direct segment to appropriate socket  server host may support many simultaneous TCP sockets:  each socket identified by its own 4-tuple  web servers have different sockets for each connecting client

Transport Layer 3-37 Connection-oriented demux: example transport application physical link network P3 transport application physical link P4 transport application physical link network P2 source IP,port: A,9157 dest IP, port: B,80 source IP,port: B,80 dest IP,port: A,9157 host: IP address A host: IP address C network P6 P5 P3 source IP,port: C,5775 dest IP,port: B,80 source IP,port: C,9157 dest IP,port: B,80 three segments, all destined to IP address: B, dest port: 80 are demultiplexed to different sockets server: IP address B

Transport Layer 3-38 Connection-oriented demux: example transport application physical link network P3 transport application physical link transport application physical link network P2 source IP,port: A,9157 dest IP, port: B,80 source IP,port: B,80 dest IP,port: A,9157 host: IP address A host: IP address C server: IP address B network P3 source IP,port: C,5775 dest IP,port: B,80 source IP,port: C,9157 dest IP,port: B,80 P4 threaded server

Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Network Layer 4-39

Network Layer 4-40 IP addressing: introduction  IP address: 32-bit identifier for host, router interface  interface: connection between host/router and physical link  router’s typically have multiple interfaces  host typically has one or two interfaces (e.g., wired Ethernet, wireless )  IP addresses associated with each interface =

Network Layer 4-41 Subnets  IP address:  subnet part - high order bits  host part - low order bits  what’s a subnet ?  device interfaces with same subnet part of IP address  can physically reach each other without intervening router network consisting of 3 subnets subnet

Network Layer 4-42 recipe  to determine the subnets, detach each interface from its host or router, creating islands of isolated networks  each isolated network is called a subnet subnet mask: /24 Subnets / / / subnet

Network Layer 4-43 IP addressing: CIDR CIDR: Classless InterDomain Routing  subnet portion of address of arbitrary length  address format: a.b.c.d/x, where x is # bits in subnet portion of address subnet part host part /23

Network Layer 4-44 IP addresses: how to get one? Q: How does a host get IP address?  hard-coded by system admin in a file  Windows: control-panel->network->configuration- >tcp/ip->properties  UNIX: /etc/rc.config  DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server  “plug-and-play ”

Network Layer 4-45 Hierarchical addressing: route aggregation “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16” /23 Organization hierarchical addressing allows efficient advertisement of routing information: