CS 3830 Day 7 Introduction 1-1. 2: Application Layer 2 Processes communicating Process: program running within a host. r within same host, two processes.

Slides:



Advertisements
Similar presentations
HyperText Transfer Protocol (HTTP)
Advertisements

Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
Application Layer-11 CSE401N: Computer Networks Lecture-4 Application Layer Overview HTTP.
2: Application Layer1 Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols m transport-layer service.
Chapter 2: Application Layer
HyperText Transfer Protocol (HTTP) Computer Networks Computer Networks Spring 2012 Spring 2012.
1 Creating a network app Write programs that m run on different end systems and m communicate over a network. m e.g., Web: Web server software communicates.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Application Layer Overview and Web/HTTP
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss.
9/16/2003-9/18/2003 The Application Layer and Java Programming September 16-18, 2003.
Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
Week 11: Application Layer1 Week 11: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Web, HTTP and Web Caching
Introduction to the Application Layer Computer Networks Computer Networks Spring 2012 Spring 2012.
2: Application Layer1 Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols m transport-layer service.
Chapter 2 Application Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 4.
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
2/9/2004 Web and HTTP February 9, /9/2004 Assignments Due – Reading and Warmup Work on Message of the Day.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss.
Dr. Philip Cannata 1 Principles of Network Applications.
Introduction 1 Lecture 5 Application Layer slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
2: Application Layer World Wide Web (WWW). Introduction 1-2 Internet protocol stack (recap) r application: supporting network applications m FTP,
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Chapter 2, slide: 1 CS 372 – introduction to computer networks* Monday June 28 Announcements: r Lab 1 is due today r Lab 2 is posted today and is due next.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
19-1 Last time □ TCP ♦ Throughput ♦ Fairness ♦ Delay modeling □ TCP socket programming.
1 Application Layer Lecture 4 Imran Ahmed University of Management & Technology.
FTP (File Transfer Protocol) & Telnet
Mail (smtp), VoIP (sip, rtp)
2: Application Layer1 CS 4244: Internet Software Development Dr. Eli Tilevich.
Rensselaer Polytechnic Institute Shivkumar Kalvanaraman, Biplab Sikdar 1 The Web: the http protocol http: hypertext transfer protocol Web’s application.
2: Application Layer1 Internet apps: their protocols and transport protocols Application remote terminal access Web file transfer streaming multimedia.
Week 11: Application Layer1 Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,…
2: Application Layer1 Web and HTTP First some jargon Web page consists of base HTML-file which includes several referenced objects Object can be HTML file,
1 Computer Communication & Networks Lecture 28 Application Layer: HTTP & WWW p Waleed Ejaz
What makes a network good? Ch 2.1: Principles of Network Apps 2: Application Layer1.
Sockets process sends/receives messages to/from its socket
CS1652 September 5 th, 2013 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Application Layer of TCP/IP. Application Layer Application Layer Architecture transport-layer service models client-server paradigm peer-to-peer paradigm.
1 HTTP EECS 325/425, Fall 2005 September Chapter 2: Application layer r 2.1 Principles of network applications m app architectures m app requirements.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Lecture 23 Application Layer ELEN E6761: Communication Networks Instructor: Javad Ghaderi Slides adapted from “Computer Networking: A Top Down Approach”
2: Application Layer 1 Application layer  Principles of network applications  Web and HTTP  FTP, TFTP  TELNET  Electronic Mail  SMTP, POP3, IMAP.
2: Application Layer 1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
Important r There will be NO CLASS on Friday 1/30/2015! r Please mark you calendars 1.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
1 Chapter 2: Application Layer Part A Introduction r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 7 Omar Meqdadi Department of Computer Science and Software Engineering University of.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Week 11: Application Layer 1 Web and HTTP r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,… r Web page consists.
@Yuan Xue CS 283Computer Networks Spring 2011 Instructor: Yuan Xue.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CSEN 404 Application Layer I Amr El Mougy Lamia Al Badrawy.
2: Application Layer 1 Chapter 2 Application Layer These ppt slides are originally from the Kurose and Ross’s book. But some slides are deleted and added.
Introduction to Networks
Application Layer Dr. Adil Yousif Lecture 2 CS.
Internet transport protocols services
Chapter 2 Application Layer
Introduction to Networks
Computer Communication & Networks
لایه ی کاربرد مظفر بگ محمدی 2: Application Layer.
Presentation transcript:

CS 3830 Day 7 Introduction 1-1

2: Application Layer 2 Processes communicating Process: program running within a host. r within same host, two processes communicate using inter-process communication (defined by OS). r processes in different hosts communicate by exchanging messages Client process: process that initiates communication Server process: process that waits to be contacted r Note: applications with P2P architectures have client processes & server processes

2: Application Layer 3 Sockets r process sends/receives messages to/from its socket r socket analogous to door  sending process shoves message out door  sending process relies on transport infrastructure on other side of door which brings message to socket at receiving process process TCP with buffers, variables socket host or server process TCP with buffers, variables socket host or server Internet controlled by OS controlled by app developer host or server host or server host or server

2: Application Layer 4 Addressing processes r to receive messages, process must have identifier r host device has unique 32-bit IP address r Q: does IP address of host on which process runs suffice for identifying the process?

2: Application Layer 5 Addressing processes r to receive messages, process must have identifier r host device has unique 32-bit IP address r Q: does IP address of host on which process runs suffice for identifying the process?  A: No, many processes can be running on same host r identifier includes both IP address and port numbers associated with process on host. r Example port numbers:  HTTP server: 80  Mail server: 25 r to send HTTP message to web server:  IP address:  Port number: 80 r more details later…

2: Application Layer 6 App-layer protocol defines: r Types of messages exchanged,  e.g., request, response r Message syntax:  what fields in messages & how fields are delineated r Message semantics  meaning of information in fields r Rules for when and how processes send & respond to messages Public-domain protocols: r defined in RFCs r allows for interoperability r e.g., HTTP, SMTP Proprietary protocols: r e.g., Skype

2: Application Layer 7 What transport service does an app need? Data loss r some apps (e.g., audio) can tolerate some loss r other apps (e.g., file transfer, telnet) require 100% reliable data transfer Timing r some apps (e.g., Internet telephony, interactive games) require low delay to be “effective” Throughput r some apps (e.g., multimedia) require minimum amount of throughput to be “effective” r other apps (“elastic apps”) make use of whatever throughput they get Security r Encryption, data integrity, …

2: Application Layer 8 Transport service requirements of common apps Application file transfer Web documents real-time audio/video stored audio/video interactive games instant messaging Data loss no loss loss-tolerant no loss Throughput elastic audio: 5kbps-1Mbps video:10kbps-5Mbps same as above few kbps up elastic Time Sensitive no yes, 100’s msec yes, few secs yes, 100’s msec yes and no

2: Application Layer 9 Internet transport protocols services TCP service: r connection-oriented: setup required between client and server processes r reliable transport between sending and receiving process r flow control: sender won’t overwhelm receiver r congestion control: throttle sender when network overloaded r does not provide: timing, minimum throughput guarantees, security UDP service: r unreliable data transfer between sending and receiving process r does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security Q: why bother? Why is there a UDP?

2: Application Layer 10 Internet apps: application, transport protocols Application remote terminal access Web file transfer streaming multimedia Internet telephony Application layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (eg Youtube), RTP [RFC 1889] SIP, RTP, proprietary (e.g., Skype) Underlying transport protocol TCP TCP or UDP typically UDP

2: Application Layer 11 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP r 2.4 Electronic Mail  SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P applications r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP

2: Application Layer 12 Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,… r Web page consists of base HTML-file which includes several referenced objects r Each object is addressable by a URL r Example URL: host name path name

2: Application Layer 13 HTTP overview HTTP: hypertext transfer protocol r Web’s application layer protocol r client/server model  client: browser that requests, receives, “displays” Web objects  server: Web server sends objects in response to requests PC running Chrome Server running Apache Web server Mac running Safari HTTP request HTTP response

2: Application Layer 14 HTTP overview (continued) Uses TCP: r client initiates TCP connection (creates socket) to server, port 80 r server accepts TCP connection from client r HTTP messages (application- layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server) r TCP connection closed HTTP is “stateless” r server maintains no information about past client requests Protocols that maintain “state” are complex! r past history (state) must be maintained r if server/client crashes, their views of “state” may be inconsistent, must be reconciled aside

2: Application Layer 15 HTTP connections Nonpersistent HTTP r At most one object is sent over a TCP connection. Persistent HTTP r Multiple objects can be sent over single TCP connection between client and server.

2: Application Layer 16 Nonpersistent HTTP Suppose user enters URL 1a. HTTP client initiates TCP connection to HTTP server (process) at on port HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index 1b. HTTP server at host waiting for TCP connection at port 80. “accepts” connection, notifying client 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket time (contains text, references to 10 jpeg images)

2: Application Layer 17 Nonpersistent HTTP (cont.) 5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects 6. Steps 1-5 repeated for each of 10 jpeg objects 4. HTTP server closes TCP connection. time

file received 2: Application Layer 18 Non-Persistent HTTP: Response time Definition of RTT: time for a small packet to travel from client to server and back. Response time: r one RTT to initiate TCP connection r one RTT for HTTP request and first few bytes of HTTP response to return r file transmission time: total = 2RTT+transmit time time to transmit file initiate TCP connection RTT request file RTT time

2: Application Layer 19 Persistent HTTP Nonpersistent HTTP issues: r requires 2 RTTs per object r OS overhead for each TCP connection r browsers often open parallel TCP connections to fetch referenced objects Persistent HTTP r server leaves connection open after sending response r subsequent HTTP messages between same client/server sent over open connection r client sends requests as soon as it encounters a referenced object r as little as one RTT for all the referenced objects

2: Application Layer 20 HTTP request message r two types of HTTP messages: request, response r HTTP request message:  ASCII (human-readable format) GET /somedir/page.html HTTP/1.1 Host: User-agent: Mozilla/4.0 Connection: close Accept-language:fr (extra carriage return, line feed) request line (GET, POST, HEAD commands) header lines Carriage return, line feed indicates end of message

2: Application Layer 21 HTTP request message: general format

2: Application Layer 22 HTTP response message HTTP/ OK Connection close Date: Thu, 06 Aug :00:15 GMT Server: Apache/1.3.0 (Unix) Last-Modified: Mon, 22 Jun 1998 …... Content-Length: 6821 Content-Type: text/html data data data data data... status line (protocol status code status phrase) header lines data, e.g., requested HTML file

2: Application Layer 23 HTTP response status codes 200 OK  request succeeded, requested object later in this message 301 Moved Permanently  requested object moved, new location specified later in this message (Location:) 400 Bad Request  request message not understood by server 404 Not Found  requested document not found on this server 505 HTTP Version Not Supported In first line in server->client response message. A few sample codes:

2: Application Layer 24 Trying out HTTP (client side) for yourself 1. Telnet to your favorite Web server: Opens TCP connection to port 80 (default HTTP server port) at Anything typed in sent to port 80 at telnet Type in a GET HTTP request: GET /~summerss/ HTTP/1.1 Host: By typing this in (hit carriage return twice), you send this minimal (but complete) GET request to HTTP server 3. Look at response message sent by HTTP server!