CHAPTER 17: CORROSION AND DEGRADATION

Slides:



Advertisements
Similar presentations
Electricity from Chemical Reactions
Advertisements

Created by C. Ippolito March 2007 Updated March 2007 Chapter 22 Electrochemistry Objectives: 1.describe how an electrolytic cell works 2.describe how galvanic.
Pgs How does our lab from Friday link to corrosion?  Corrosion is the process of returning metals to their natural state  It’s a REDOX reaction!!
Electrochemistry II. Electrochemistry Cell Potential: Output of a Voltaic Cell Free Energy and Electrical Work.
Chemical vs. Electrochemical Reactions  Chemical reactions are those in which elements are added or removed from a chemical species.  Electrochemical.
Protecting Metals from Corrosion. a)Natural Protection: Some metals react with substances in the air to form thin natural coatings that adhere tightly.
CHAPTER 16: CORROSION AND DEGRADATION
CHAPTER 16: CORROSION AND DEGRADATION
Surface Technology Part 4 Corrosion
ISSUES TO ADDRESS... Why does corrosion occur ? 1 What metals are most likely to corrode? How do temperature and environment affect corrosion rate? How.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Chapter 19 Electrochemistry
Crack grows incrementally typ. 1 to 6 increase in crack length per loading cycle Failed rotating shaft --crack grew even though K max < K c --crack grows.
Corrosion of metals and their protection
Corrosion & Associated Degradation
MSE-536 ISSUES TO ADDRESS... Why does corrosion occur ? 1 What metals are most likely to corrode? How do temperature and environment affect corrosion rate?
Batteries and Fuel Cells
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18.
Chapter 17 Electrochemistry 1. Voltaic Cells In spontaneous reduction-oxidation reactions, electrons are transferred and energy is released. The energy.
Corrosion & degradation
Lecture 9. Chemistry of Oxidation-Reduction Processes Prepared by PhD Halina Falfushynska.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Chapter ISSUES TO ADDRESS... Why does corrosion occur ? What metals are most likely to corrode? How do temperature and environment affect corrosion.
Types of corrosion Dr. Syed Hassan Javed.
CORROSION By: MANAN JAIN ( ) T32
Iron Corrosion—in generalIron Corrosion—in general  A redox reaction in a makeshift voltaic cell  Processes are separate on metal, but often occur.
Chapter 22 REDOX.
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Chapter 23 Corrosion.
Chapter 20 Electrochemistry.
Corrosion Mechanisms Lecture#02.
Corrosion is the unwanted oxidation of a metal.. Oxidation of all Metals in general is called corrosion Oxidation of All Metals is called Corrosion.
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
Cell potential is related to concentrations Electrodes can be used that are sensitive to specific ions They measure concentrations of specific ions which.
6/2/20161 CHAPTER 2 CORROSION PRINCIPLES Chapter Outlines 2.1 Oxidation and Reduction Reactions 2.2 Standard Electrode Half- Cell Potentials 2.3 Standard.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 17 Corrosion and Degradation of Materials.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid Deposition – the result of air pollutants combining with each other to produce acid precipitation or rainwater that has become acidic. Acid – pH lower.
Unit 16 Electrochemistry Oxidation & Reduction. Oxidation verses Reduction Gain oxygen atoms 2 Mg + O 2  2 MgO Lose electrons (e - ) Mg (s)  Mg + 2.
Section 14.2 Voltaic Cells p Voltaic cells Voltaic cells convert chemical energy to electrical energy. In redox reactions, oxidizing agents.
Forms of Corrosion: Uniform Pitting Crevice Corrosion or Concentration Cell Galvanic or Two-Metal Stress Corrosion Cracking Intergranular Dealloying Selective.
Corrosion process and control (TKK-2289)
Reactions of Metals. Reactions of Metals with H 2 O The metal is the anode and will be oxidized. 2H 2 O + 2e-  2OH - + H 2 E° = V Mg  Mg 2+ +
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Chapter 19: Electrochemistry: Voltaic Cells Generate Electricity which can do electrical work. Voltaic or galvanic cells are devices in which electron.
B ATTERIES, FUEL CELLS & CORROSION [ ]. S TANDARD REDUCTION POTENTIALS Place in order of increasing strength as oxidizing agents: Cl 2, Mg +2,
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
In the name of GOD.
The Battery Writing Oxidation and Reduction Reactions You will need a partner, a periodic table and the Activity Series on pg. 357.
Materials Performance Corrosion/SCC,EAC, etc.
Definition of Corrosion
CORROSION AND DEGRADATION
Redox Processes AHL.
Definition of Corrosion
Corrosion Objectives Corrosion process Environmental factors
© 2011 Cengage Learning Engineering. All Rights Reserved.
Reactions of Metals.
Galvanic Series.
Chapter 2 - Electrochemistry and Basics of Corrosion
Corrosion & Associated Degradation
CHAPTER 13 Corrosion 13-1.
Corrosion Degradation 0f a metal due to reaction with its environment Impairs function and appearance of component.
ISSUES TO ADDRESS... Why does corrosion occur ? 1 What metals are most likely to corrode? How do temperature and environment affect corrosion rate? How.
Ship Related Corrosion Topics
Engineering Materials
Increase in Ease of Oxidation
Presentation transcript:

CHAPTER 17: CORROSION AND DEGRADATION ISSUES TO ADDRESS... • Why does corrosion occur? • What metals are most likely to corrode? • How do temperature and environment affect corrosion rate? • How do we suppress corrosion? 1

THE COST OF CORROSION • Corrosion: • Cost: --the destructive electrochemical attack of a material. --Al Capone's ship, Sapona, off the coast of Bimini. Photos courtesy L.M. Maestas, Sandia National Labs. Used with permission. • Cost: --4 to 5% of the Gross National Product (GNP)* --this amounts to just over $400 billion/yr** * H.H. Uhlig and W.R. Revie, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 3rd ed., John Wiley and Sons, Inc., 1985. **Economic Report of the President (1998). 2

CORROSION OF ZINC IN ACID • Two reactions are necessary: -- oxidation reaction: -- reduction reaction: Adapted from Fig. 17.1, Callister 6e. (Fig. 17.1 is from M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Company, 1986.) • Other reduction reactions: -- in an acid solution -- in a neutral or base solution 3

STANDARD HYDROGEN (EMF) TEST • Two outcomes: --Metal sample mass --Metal sample mass --Metal is the anode (-) --Metal is the cathode (+) (relative to Pt) (relative to Pt) Standard Electrode Potential 4

STANDARD EMF SERIES • EMF series • Metal with smaller • Ex: Cd-Ni cell V corrodes. • Ex: Cd-Ni cell V o o metal metal metal Au Cu Pb Sn Ni Co Cd Fe Cr Zn Al Mg Na K +1.420 V +0.340 - 0.126 - 0.136 - 0.250 - 0.277 - 0.403 - 0.440 - 0.744 - 0.763 - 1.662 - 2.262 - 2.714 - 2.924 o DV = 0.153V Data based on Table 17.1, Callister 6e. 5

CORROSION IN A GRAPEFRUIT 6

EFFECT OF SOLUTION CONCENTRATION • Ex: Cd-Ni cell with standard 1M solutions • Ex: Cd-Ni cell with non-standard solutions n = #e- per unit oxid/red reaction (=2 here) F = Faraday's constant =96,500 C/mol. • Reduce VNi - VCd by --increasing X --decreasing Y 7

GALVANIC SERIES • Ranks the reactivity of metals/alloys in seawater Platinum Gold Graphite Titanium Silver 316 Stainless Steel Nickel (passive) Copper Nickel (active) Tin Lead Iron/Steel Aluminum Alloys Cadmium Zinc Magnesium Based on Table 17.2, Callister 6e. (Source of Table 17.2 is M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Company, 1986.) 8

FORMS OF CORROSION • Stress corrosion • Uniform Attack work together at crack tips. • Uniform Attack Oxidation & reduction occur uniformly over surface. • Erosion-corrosion Break down of passivating layer by erosion (pipe elbows). • Selective Leaching Preferred corrosion of one element/constituent (e.g., Zn from brass (Cu-Zn)). • Pitting Downward propagation of small pits & holes. Fig. 17.8, Callister 6e. (Fig. 17.8 from M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Company, 1986.) • Intergranular Corrosion along grain boundaries, often where special phases exist. • Galvanic Dissimilar metals are physically joined. The more anodic one corrodes.(see Table 17.2) Zn & Mg very anodic. • Crevice Between two pieces of the same metal. Fig. 17.6, Callister 6e. (Fig. 17.6 is courtesy LaQue Center for Corrosion Technology, Inc.) 9 Fig. 17.9, Callister 6e.

CONTROLLING CORROSION • Self-protecting metals! --Metal ions combine with O to form a thin, adhering oxide layer that slows corrosion. • Reduce T (slows kinetics of oxidation and reduction) • Add inhibitors --Slow oxidation/reduction reactions by removing reactants (e.g., remove O2 gas by reacting it w/an inhibitor). --Slow oxidation reaction by attaching species to the surface (e.g., paint it!). • Cathodic (or sacrificial) protection --Attach a more anodic material to the one to be protected. Adapted from Fig. 17.13(a), Callister 6e. (Fig. 17.13(a) is from M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Co., 1986.) Adapted from Fig. 17.14, Callister 6e. 10

SUMMARY • Corrosion occurs due to: --the natural tendency of metals to give up electrons. --electrons are given up by an oxidation reaction. --these electrons then are part of a reduction reaction. • Metals with a more negative Standard Electrode Potential are more likely to corrode relative to other metals. • The Galvanic Series ranks the reactivity of metals in seawater. • Increasing T speeds up oxidation/reduction reactions. • Corrosion may be controlled by: -- using metals which form a protective oxide layer -- reducing T -- adding inhibitors -- painting --using cathodic protection. 11

ANNOUNCEMENTS Reading: Core Problems: Self-help Problems: