Acknowledging contributions by others to the TWiLiTE Scanning Holographic Telescope Team: Marc Hammond (SDL & Diffraction Ltd.) – Consultant & Designer.

Slides:



Advertisements
Similar presentations
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
Advertisements

November 20, 2003University of Colorado The Off-Plane Option Study Results Potential Capabilities Webster Cash University of Colorado.
Practical Optics Class Opti696D, Fall Laser Bar Code Scanner Chunyu Zhao.
PSI: Polarimetric Spectroscopic Imager - A Simple, High Efficiency, High Resolution Spectro-­Polarimeter Samuel C. Barden Frank Hill.
A Narrow Field Lobster Eye Telescope Dick Willingale – AXRO December 2014 A Narrow Field Lobster Eye Telescope (for SVOM and similar) Dick Willingale Adrian.
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Jan 2006 TWiLiTE (Tropospheric Wind Lidar Technology Experiment) IIP Update B. Gentry 1, G. Schwemmer 6, M. McGill 1, M. Hardesty 2, A. Brewer 2, T. Wilkerson.
Uncertainty in Cloud Aerosol Transport System (CATS) Products and Measurements Presented by Patrick Selmer Goddard advisor: Dr. Matthew McGill Assisted.
SLAC National Accelerator Center
Wind Lidar Working Group Oxnard, CA Feb 2003 Ultraviolet and Multiplexed HOEs: Current Performance and Future Prospects Geary Schwemmer, NASA/GSFC Sangwoo.
The Field of View of a Thin Lens Interferometer Baseline=2B F F=range from array center to detector  ’’  Nulled here. B B 2Bsin  Bsin  2 Channels.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
Characterization of Orbiting Wide-angle Light-collectors (OWL) By: Rasha Usama Abbasi.
1.B – Solar Dynamo 1.C – Global Circulation 1.D – Irradiance Sources 1.H – Far-side Imaging 1.F – Solar Subsurface Weather 1.E – Coronal Magnetic Field.
Systematics in the Pierre Auger Observatory Bruce Dawson University of Adelaide for the Pierre Auger Observatory Collaboration.
Generation-X telescope: Measurement of On-Orbit Adjustment Data Dan Schwartz, R. J. Brissenden, M. Elvis, G. Fabbiano, T. Gaetz, D. Jerius, M. Juda, P.
H. MAINAUD DURAND on behalf of the CLIC active pre-alignement team with 3D views and data from Hubert Gerwig, Richard Rosing and Juha Kemppinen Pre-alignment.
Integration and Alignment of Optical Subsystem Roy W. Esplin Dave McLain.
Status of the Hybrid Doppler Wind Lidar (HDWL) Transceiver ACT Project Cathy Marx (NASA/GSFC), Principal Investigator Bruce Gentry (NASA/GSFC), Michael.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
NA62 Gigatracker Working Group Meeting 2 February 2010 Massimiliano Fiorini CERN.
The wave nature of light Interference Diffraction Polarization
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
Optical Design Work for a Laser-Fiber Scanned
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
GSFC Lidar Working Group Meeting Frisco CO, June 2004 HARLIE – GLOW Union UV Doppler Demonstration Geary Schwemmer Bruce Gentry NASA GSFC.
HESSI Imaging Capability Pre Environmental Review Brian R. Dennis GSFC Tuesday, February 29, 2000.
IPBSM status and plan ATF project meeting M.Oroku.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
Chinese SONG progress and its design introduction Guomin Wang Nanjing Institute of Astronomical Optics & Technology Nanjing.
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
UVC Airborne Holographic Lidar Transceiver Marc Hammond, David Huish, Tom Wilkerson, Scott Cornelsen Space Dynamics Laboratory Utah State University
Scaling Surface and Aircraft Lidar Results for Space-Based Systems (and vice versa) Mike Hardesty, Barry Rye, Sara Tucker NOAA/ETL and CIRES Boulder, CO.
Pointing Determination for a Coherent Wind Lidar Mission
B. Gentry/GSFCGTWS 2/26/01 Doppler Wind Lidar Measurement Principles Bruce Gentry NASA / Goddard Space Flight Center based on a presentation made to the.
Beam alignment and incorporation into optical design
Optical Subsystem Roy Esplin Dave McLain. Internal Optics Bench Subassembly 2 Gut Ray Dichroic Beamsplitter (MWIR reflected, LWIR transmitted) LWIR Lens.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
Progress Report Geo-CAPE Coastal Ecosystem Dynamics Imager (CEDI) IRAD Repackaging Study Jason Budinoff / GSFC Cathy Marx / GSFC May 12, 2011.
G O D D A R D S P A C E F L I G H T C E N T E R Status of the Tropospheric Wind Lidar Technology Experiment (TWiLITE) IIP Project Bruce Gentry, M. McGill,
GSFC Scanning Holographic Receivers for Air and Space Geary Schwemmer Meeting of the Working Group on Space-based Lidar Winds Sedona, Arizona January 27.
1 Optical observations of asteroids – and the same for space debris… Dr. D. Koschny European Space Agency Chair of Astronautics, TU Munich Stardust school.
1/10 Tatsuya KUME Mechanical Engineering Center, High Energy Accelerator Research Organization (KEK) ATF2-IN2P3-KEK kick-off meeting (Oct. 10, 2006) Phase.
Improved Annular-Field Three-Mirror Anastigmat? M.Lampton UCB SSL Previous AFTMAs have pri-sec separation 2.4m Can pri-sec separation be reduced? –Support.
Wind Lidar Working Group, 29 June 2005 Welches, OR Doppler Lidar Scanning Telescope Technology Geary Schwemmer Meeting of the Working Group on Space-based.
A Method for Correcting for Telescope Spectral Transmission in the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) John D. Elwell, Deron.
HOLOGRAPHIC SCANNING LIDAR TELESCOPES Geary K. Schwemmer Laboratory For Atmospheres NASA Goddard Space Flight Center
Image at:
SLWG Feb 2007 Progress on the TWiLITE Direct Detection Doppler Lidar Instrument Incubator Program B. Gentry 1, G. Schwemmer 6, M. McGill 1, M. Hardesty.
THOR System: Cloud THickness from Offbeam lidar Returns Co-Investigators:Robert Cahalan/913 & Matthew McGill/912 Chief Engineer:John Kolasinski/565 Optical.
14FEB2005/KWCAE2-UsersGroup Astro-E2 X-Ray Telescopes XRT Setup & Structure Performance Characteristics –Effective Area –Angular Resolution –Optical Axes.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y APS Formation Sensor.
Target Engagement Graham Flint - General Atomics Tom Lehecka - Penn State Electro-Optics Center Bertie Robson - NRL HAPL Project Review Oak Ridge National.
J. H. Burgea,b, W. Davisona, H. M. Martina, C. Zhaob
Overview of HARLIE Measurement Capabilities David Miller 1, Geary Schwemmer 2, Sangwoo Lee 1, Tom Wilkerson 3 1 Science Systems and Applications, Inc.
Kavaya-1 Coherent Doppler Lidar Roadmap to Both the NRC Decadal Survey “Science Demonstration” and “Operational” Missions Michael J. Kavaya Jirong Yu Upendra.
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
Development of Micro-Pore Optics at NAOC MPO research group X-ray Imaging Laboratory, NAOC Presented by Chen Zhang.
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Internal CDR meeting December 20th, 2005
SPARCLAB: PW-class Ti:Sa laser+SPARC
IR Detector - Test cryostat : Machining
19th Coherent Laser Radar Conference
Validation of airborne 1
Optics Alan Title, HMI-LMSAL Lead,
Antenna Efficiency Optimization in Coherent Lidar Systems   Sammy Henderson, Pat Kratovil, and Charley Hale Beyond Photonics beyondphotonics.com.
Presentation transcript:

Acknowledging contributions by others to the TWiLiTE Scanning Holographic Telescope Team: Marc Hammond (SDL & Diffraction Ltd.) – Consultant & Designer Matthew McGill (GSFC) – Scientist & Adviser Richard Nelson (SDL) – Designer Quinn Young (SDL) – Thermal Engineering Brent Bos (GSFC) – Optical Engineering, ex-COTR Richard Rallison (Wasatch Photonics) – HOE Consultant Elroy Pearson (Wasatch Photonics) – HOE Consultant Ultraviolet Holographic Telescope for TWiLiTE J. Hancock*, J. Swasey*, A. Shelley*, G. Schwemmer, C. Marx §, S. Schicker*, G. Bowen*, T. Wilkerson* *Space Dynamics Laboratory Logan, UT § NASA-Goddard space Flight Center Greenbelt, MD Presentation for the Working Group on Space Based Lidar Winds Monterey, CA February 5 – 8, 2008

Outline of Presentation Background of TWiLiTE Telescope Telescope Requirements Auto-alignment System HOE Rotary Drive Optical System Opto-mechanical Integrity Properties of First UV HOEs Solar Background Light Alignment and Test Results Backup Information Slides

Heritage: HOE Telescope Development PHASERS refl. HOE, 532 nm 1995/1999 HARLIE trans. HOE 1064 nm, 1998 Receiver: UV HOE (355 nm) 45-deg off-axis FOV Folded optical path 3-rod metering structure Rotating HOE (Step/Stare) Coaxial laser transmission via periscope through HOE Designer: Marc Hammond SDL’s UV Cornerstone HOE 355 nm, (design 2003/2004) Geary Schwemmer et al.

TWiLiTE Telescope Design ConceptSDL Optics Laboratory, December 2007 TWiLiTE telescope delivered to NASA-Goddard December 14, 2007

Telescope Functional Requirements Rcvr FOV and laser beam; conical, 45° off-nadir, N-step-stare Integrated rotating HOE and beam steering mirrors –Step Interval 1 – 2 seconds, Alignment settling time < 1 sec Provide pointing knowledge to ± 1 mrad –Scan motor encoder + backlash ≤ 1 mrad Throughput to Doppler RCVR –Aperture * efficiency > 296 cm 2 Automatic bore sight (± 40 urad) –Detector & beam steering mirror (AAS system) –AAS boresight specifications: ParameterValue Field of View800 µrad Nominal alignment time1 sec Maximum alignment time2 sec Feedback control time constant 100 ms

HOE L1BS L2 Auto-alignment Optics (AAS) Laser Feedback to fast steering mirror Auto-alignment FOV 800 urads Telescope FOV 200 urads Focal spot size ~150 urads Automatic Boresight Alignment Design goals

Drive Design for HOE Rotation Requirements Step size and time – Turn HOE 90 deg in 1 second Velocity error budget for azimuth angle < 0.2m/s  1 mrad Drive System Motor - Animatics SM 3430 –Encoder – 4000 counts/rev –Low Pressure Grease Bearing – Kaydon SG180XP0A –440C Stainless Steel Sprockets and Belt – Gates GT2 –176 Tooth Custom Sprocket –22 Tooth Pulley –1600 Tooth Belt –Gear Ratio 8:1 Azimuth Angle Pointing Knowledge Motor Resolution – 0.20 mrad Pulley Backlash – 0.62 mrad Sprocket Backlash – 0.16 mrad RSS Total – 0.67 mrad Sum Total – 0.98 mrad

Telescope Optical Design HOE Receiver Fiber Beam Splitter Advance in HOE technology UV operation at 355 nm Tertiary Secondary (flat)

Displacement Analysis for Optical Elements Displacements Due to –Thermal 20 +/-5C –Vibration Critical Optics –Tertiary Mirror –Secondary Mirror Tertiary MirrorSecondary Mirror Axial (μm) Radial (μm) Tilt (μrad) Axial (μm) Radial (μm) Tilt (μrad) Thermal ±25±35±5±40±10±20 Vibration ±40±25±30±70±94±121 Displacement Total ±65±60±35±110±104±141 Required Tolerances ±250±100±349±250±150±175 Summary: Mechanical displacements are within optical tolerances

Focal Length, Diffraction Angle and Efficiency Focal Length: mm Diffraction Angle: degrees Focal Length HOE # 1: Throughput ~ 60 % Fraction of energy (200  m spot) = 59 % Estimated size ~ 340  m

Throughput Link Budget ParameterCDR ValueBasis / Explanation Clear aperture diam. (cm)38.8TWiLiTE HOE #1 measurement Effective area (cm 2 )786(area-obscuration) x cos 45° HOE efficiency0.60Pre-TWILITE Laboratory measurement Boresight and alignment losses0.59TWiLiTE HOE #2 measurement Boresight pickoff.985Calculation for S/N=10 per pixel Fiber throughput0.93 Other optics0.96 Total Optical Efficiency0.32Product of optical efficiencies Total throughput (cm 2 )254Area * Total Optical Efficiency (296 desired) FOV (µrad) µm field stop / 1m focal length Slew time1 sSelected motor and gearing Bore sight time1 sAuto-alignment SNR calculation

Predicted Solar Background Signals for TWiLiTE Telescope (Nadir FOV) No solar background contribution below 300 nm: Borofloat glass absorption Visible light (400 – 700 nm) produces background (per shot per bin) at most 0.63 photon counts (small fiber) 2.52 counts (AAS system) Ultraviolet light (300 – 400 nm) background (per shot per bin): 1.0 photon counts (small fiber, narrow filter) 4.0 counts (AAS, narrow filter) 2.2 counts (small fiber, wide filter) 8.9 counts (AAS, wide filter) Estimated minimum total SNR for the perfectly aligned AAS signal, integrated over all altitude range bins. Adjusted simulations needed to refine the predictions of SNR as a function of AAS degree of alignment 1 range bin = 250 meters (range gate =1.67  sec)

Succesful Alignment & Test at SDL for Goddard Delivery, December 2007 Mutual alignment of all telescope optics with HOE normal and rotation axis:  10  radians Best spot size ( ~ 340  m) for HOE # 1 & 2 at 45.0 º, but Diffraction angle for initial, bearing-centered HOE = 45.9 º Small shims and tilt for HOE de-centration: adjusts to 45.0 º Mutual alignment  20  rad between AAS and TWiLiTE sensors (requirement:  40  rad) Alignment settling time = 0.6 seconds (requirement 1 sec) Pointing accuracy < 650  rad, SD = 250  rad (res.160  rad) (requirement: 1000  rad) FOV (TWiLiTE)  rad (required 200  rad) Inference: excess due to excess spot size FOV (AAS) ± 800  rad per channel (required 800  rad) Improved performance expected with recent HOE fabrication

Backup Slides on TWiLiTE Telescope

TWiLiTE System Block Diagram Scanner Ctrl Laser Power Timing/Control Data Acq. Laser Computer Scanning Telescope Laser Cooling SIGNAL FIBER ANALOG/PHOTON COUNTS, SYS DATA Etalon Control SYNC AFT OPTICS Det. Box Temp PRESSURE VESSEL ETALON RECEIVER TEMP CONTROL ETALON SPACING/PARALLELISM A/D SIGNAL FIBER WATER POWER INS/GPS Data Power Dist/Sw INS/GPS DOPPLER RECEIVER PRESSURE VESSEL Window HOE

TWiLiTE Telescope Requirements to meet System Measurement Goals ParameterValueTelescope Impact Velocity accuracy (LOS projected) (m/s)1.5Throughput Nadir angle (deg)45Throughput Step-stare scan pattern (1-16 steps)8 nominalScanner torque Scan cycle time seconds (km)112 s (22.4 km)Scanner torque Horizontal integration per LOS (seconds) & ground track (km) 10 s (2 km)Throughput & torque Slew period (s)2 - 4Scanner torque Field Of View200 µradFocal spot size, Throughput Pointing knowledge accuracy & precision900 µradScan motor system Mechanical Optical

TWiLITE Shot Noise Limited Velocity Error

Solar Irradiance at the Top of Earth’s Atmosphere 355 nm 160  W/cm 2 -nm Source: Kitt Peak National Solar Observatory ftp://nsokp.nso.edu/pub/atlas/ 400 nm 300 nm HOE — Diffracted UV light Undiffracted visible light Wavelength of laser and interference filter  λ Filter = 0.15 or 0.25 nm blocking = otherwise

Diffracted light (300 – 400 nm) Undiffracted light (400 – 700 nm) Fiber Diam. = 200  m FOV = 200  rad A tel = 786 cm 2 Diam. = 200  m FOV = 440 mrad A fiber = cm 2 Fiber AAS Principal Wavelength Bands of Upward Scattered Sunlight HOE pickoff mirror (1.5 %)

Optical Design Radius of Curvature Diam.SubstrateDescription Secondaryflat8.5”, 8” CAPyrex Made by Nu-Tek, 0.5” thick, flat to 2 waves PV, Coated R> 99% Tertiary515 mm3” SFused SilicaCVI Collimator77.3 mm1”Fused SilicaCVI Beam Splitterflat wedge1.5”Fused Silica CVI, 1 degree wedge, R = 1.5% front side, R<0.75 back side Focus Lens20.6 mm1”Fused SilicaCVI

Alignment: Secondary, Tertiary, Periscope Diffraction plane alignment Diffraction angle alignment Tilt adjustment Translation adjustment O-ring mount

Mechanical Interface Envelope Dimensions: 25” Height 30” Diameter (includes mounts and motor, 25” without) Mounting Points (3) Metering rods (3) Top Plate 2.49” 3.00” 0.30” HOE Face Center of Laser HOE Mount Structure Telescope Mass: 46kg (101lb)

HOE and Bearing Mount Bearing Sprocket Interface Telescope Base Ring Sprocket HOE Ring HOE Tab Bearing