5/16/14 OBJ: SWBAT graph and recognize exponential functions. Bell Ringer: Start notes for Exponential functions Homework Requests: pg 246 #1-29 odds.

Slides:



Advertisements
Similar presentations
RATIONAL FUNCTIONS A rational function is a function of the form:
Advertisements

Equations in Quadratic Form
SINE AND COSINE FUNCTIONS
exponential functions
exponential functions
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
Students are expected to: Construct and analyse graphs and tables relating two variables. Solve problems using graphing technology. Develop and apply.
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
exponential functions
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
This presentation was found at We made some minor formatting changes on slides because of overlapping material, and added this slide.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
PARAMETRIC Q U A T I 0 N S. The variable t (the parameter) often represents time. We can picture this like a particle moving along and we know its x position.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
Here’s the Situation Suppose you have a choice of two different jobs at graduation Start at $30,000 with a 6% per year increase Start at $40,000 with $1200.
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
Relations And Functions.
Exponential functions
exponential functions
(r, ).
Absolute Value.
INVERSE FUNCTIONS.
Relations And Functions.
INVERSE FUNCTIONS Chapter 1.5 page 120.
Relations And Functions.
INVERSE FUNCTIONS.
Symmetric about the y axis
Relations and functions
exponential functions
Relations And Functions.
Relations And Functions.
Symmetric about the y axis
Presentation transcript:

5/16/14 OBJ: SWBAT graph and recognize exponential functions. Bell Ringer: Start notes for Exponential functions Homework Requests: pg 246 #1-29 odds 37, 39, 41, 43 Homework: p286 #1-19 odds Read Sect. 3.2 Announcements: Quiz next Week Worksheet for over the weekend. Maximize Academic Potential Turn UP!

5/16/14 Obj: SWBAT solve exponential equations Bell Ringer: Go over Quiz; Turn In project HW Requests: Unit circle WS pg 743 #11-21 odds, Homework: Complete skills practice Read Section 10.1 Ex 1-3 Announcements: Law of Cosines/Sines Project due today Friday 5/16 Extended Tues. Must do Ch 13 test thurs Education is Power! Education is Power You can DO IT!

Exponential Functions constant a is the initial value of f(x) at x = 0, b is the base

Let’s examine exponential functions. They are different than any of the other types of functions we’ve studied because the independent variable is in the exponent. Let’s look at the graph of this function by plotting some points. x 2 x /2 -2 1/4 -3 1/ Recall what a negative exponent means: BASE

a> 0, b > 1 exponential growth, 0<b< 1 Exponential Decay Pg 280

This says that if we have exponential functions in equations and we can write both sides of the equation using the same base, we know the exponents are equal. If a u = a v, then u = v The left hand side is 2 to the something. Can we re-write the right hand side as 2 to the something? Now we use the property above. The bases are both 2 so the exponents must be equal. We did not cancel the 2’s, We just used the property and equated the exponents. You could solve this for x now. The Equality Property for Exponential Functions

Let’s try one more: The left hand side is 4 to the something but the right hand side can’t be written as 4 to the something (using integer exponents) We could however re-write both the left and right hand sides as 2 to the something. So now that each side is written with the same base we know the exponents must be equal. Check:

Example 1: (Since the bases are the same we simply set the exponents equal.) Here is another example for you to try: Example 1a:

Example 2: (Let’s solve it now) (our bases are now the same so simply set the exponents equal) Let’s try another one of these.

Example 3 Remember a negative exponent is simply another way of writing a fraction The bases are now the same so set the exponents equal.

All of the transformations that you learned apply to all functions, so what would the graph of look like? up 3 up 1 Reflected over x axis down 1right 2

Reflected about y-axisThis equation could be rewritten in a different form: So if the base of our exponential function is between 0 and 1 (which will be a fraction), the graph will be decreasing. It will have the same domain, range, intercepts, and asymptote. There are many occurrences in nature that can be modeled with an exponential function. To model these we need to learn about a special base.

Slide The Nature of Exponential Functions A Table of Values

The Base “e” (also called the natural base) To model things in nature, we’ll need a base that turns out to be between 2 and 3. Your calculator knows this base. Ask your calculator to find e 1. You do this by using the e x button (generally you’ll need to hit the 2nd or yellow button first to get it depending on the calculator). After hitting the e x, you then enter the exponent you want (in this case 1) and push = or enter. If you have a scientific calculator that doesn’t graph you may have to enter the 1 before hitting the e x. You should get Example for TI-83

To Do Complete pg , 40, 42, 44 Analyze Domain, Range, Continuity, Decreasing, Increasing, Symmetry(even, odd), Bounded, Extrema, Horizontal Asymptotes, Vertical Asymptotes, Using limits describe behavior of the function as x approaches the vertical asymptote, End behavior Pg 286 #2, 4, 6, 12, 24, 66 Homework: pg odds Read Sec. 3.2

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar