ECES 352 Winter 2007Ch 13 Oscillators1 Oscillators *Feedback amplifier but frequency dependent feedback *Positive feedback, i.e. β f (  ) A (  ) < 0.

Slides:



Advertisements
Similar presentations
Lecture 2 Operational Amplifiers
Advertisements

Rama Arora, Physics Department PGGCG-11, Chandigarh
The Product Detector BFO
ECES 352 Winter 2007Ch. 7 Frequency Response Part 41 Emitter-Follower (EF) Amplifier *DC biasing ● Calculate I C, I B, V CE ● Determine related small signal.
Voltage-Series Feedback
ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 1 *Feedback circuit does not load down the basic amplifier A, i.e. doesn’t change its characteristics.
Fundamentals of Electric Circuits Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 3 Oscillator Introduction of Oscillator Linear Oscillator
6/9/2015www.noteshit.com1. AMPLIFIERS AND OSCILLATORS 6/9/2015www.noteshit.com2.
Oscillator principle Oscillators are circuits that generate periodic signals. An oscillator converts DC power from power supply to AC signals power spontaneously.
Second Order Active Filters Based on Bridged-T Networks
Lecture 91 Loop Analysis (3.2) Circuits with Op-Amps (3.3) Prof. Phillips February 19, 2003.
Op Amps Lecture 30.
Ch7 Operational Amplifiers and Op Amp Circuits
Chapter 13 Small-Signal Modeling and Linear Amplification
ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION CHARACTERISTICS CONFIGURATIONS.
Oscillators 1 मंगलवार, 18 अगस्त 2015 मंगलवार, 18 अगस्त 2015 मंगलवार, 18 अगस्त 2015 मंगलवार, 18 अगस्त 2015 मंगलवार, 18 अगस्त 2015 मंगलवार, 18 अगस्त 2015.
Parul Poltehynic Institute Subject Code : Name Of Subject : Basic Electronics Name of Unit : Ch-3 Oscillator’s Topic : Oscillator’s Name of Faculty.
Comparison of Amplifier Configurations
OSCILLATORS.
A Differentiator Circuit.  All of the diagrams use a uA741 op amp. ◦ You are to construct your circuits using an LM 356 op amp.  There is a statement.
Experiment 17 A Differentiator Circuit
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
Transistor Amplifiers
ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 1 Feedback *What is feedback?Taking a portion of the signal arriving at the load and feeding it back.
09/16/2010© 2010 NTUST Today Course overview and information.
What is an Op Amp? Ideal Op Amps Applications Examples Lecture 9. Op Amps I 1.
Module 4 Operational Amplifier
ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 1 *Feedback circuit does not load down the basic amplifier A, i.e. doesn’t change its characteristics.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 1 *Feedback circuit does not load down the basic amplifier A, i.e. doesn’t change its characteristics.
Microelectronic Circuit Design, 3E McGraw-Hill Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger.
Chapter 30 Operational Amplifiers. 2 Introduction Characteristics –High input impedance –Low output impedance –High open-loop gain –Two inputs –One output.
Fundamentals of Electric Circuits Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ECES 352 Winter 2007Ch. 7 Frequency Response Part 31 Common-Base (CB) Amplifier *DC biasing ● Calculate I C, I B, V CE ● Determine related small signal.
Ref: HKNEE3110 Oscillator1 Lecture 3 Oscillator Introduction of Oscillator Linear Oscillator –Wien Bridge Oscillator –RC Phase-Shift Oscillator.
COMMON-COLLECTOR AMPLIFIER
1 Chapter 10 Sinusoidal Steady-State Analysis 電路學 ( 二 )
Chapter 4 without an external signal source Oscillator is an electronic circuit that generates a periodic waveform on its output without an external signal.
Op-amp used as a summing amplifier or adder It is possible to apply more than one input signal to an inverting amplifier. This circuit will then add all.
ECE201 Lect-131 Loop Analysis (7.8) Circuits with Op-Amps (3.3) Dr. Holbert October 9, 2001.
6/8/2016Faculty of Engineering Cairo University Chap Lecture 2 Single-Transistor Amplifiers Dr. Ahmed Nader Adapted from presentation by Richard.
AUDIO OSCILLATORS An audio oscillator is useful for testing equipment that operates in the audio-frequency range. Such instruments always produce a sine-wave.
मंगलवार, 14 जून 2016 मंगलवार, 14 जून 2016 मंगलवार, 14 जून 2016 मंगलवार, 14 जून 2016 मंगलवार, 14 जून 2016 मंगलवार, 14 जून 2016 मंगलवार, 14 जून 2016 मंगलवार,
Module 2 Operational Amplifier Basics
 The differentiator or differentiating amplifier is as shown in figure.  This circuit will perform the mathematical operation of differentiation.
SUB.TEACHER:- MR.PRAVIN BARAD NAME:-SAGAR KUMBHANI ( ) -VIKRAMSINH JADAV( ) -PARECHA TUSHAR( ) TOPIC:-LINEAR AMPLIFIER(BJT.
Operational Amplifier
Ch7 Operational Amplifiers and Op Amp Circuits
Hartley Oscillator Circuit Theory Working and Application
Feedback: Part C – Oscillators Slides taken from:
Oscillator.
Feedback Xs Xi Xo + - Xf βf
SUMMING AMPLIFIER INTEGRATOR DIFFERENTIATOR COMPARATOR
Recall Last Lecture Introduction to BJT Amplifier
Oscillator Introduction of Oscillator Linear Oscillator Stability
Transistor Amplifiers
Wave Generation and Shaping
ME3000 ANALOG ELECTRONICS [Slide 13] Oscillators BY DREAMCATCHER
EIE 211 : Electronic Devices and Circuit Design II
Wien-Bridge Oscillator Circuits
LC Oscillators Use transistors and LC tuned circuits or crystals in their feedback network. For hundreds of kHz to hundreds of MHz frequency range. Examine.
TUTORIAL QUESTIONS – OSCILLATOR
Passive Components Rayat Shikshan Sanstha’s
Recall Last Lecture Introduction to BJT Amplifier
TUTORIAL An inverting amplifier circuit using Op-amp 741 IC, a feedback resistor, Rf = 95 kΩ and input resistance, Rin is used in a feedback oscillator.
Passive Components Rayat Shikshan Sanstha’s
Lecture 3 Oscillator Introduction of Oscillator Linear Oscillator
Chapter 13 Small-Signal Modeling and Linear Amplification
ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 1 Feedback *What is feedback?Taking a portion of the signal arriving at the load and feeding it back.
Presentation transcript:

ECES 352 Winter 2007Ch 13 Oscillators1 Oscillators *Feedback amplifier but frequency dependent feedback *Positive feedback, i.e. β f (  ) A (  ) < 0 *Oscillator gain defined by *Oscillation condition at ω = ω o (Barkhausen’s criterion) A f (ω o ) = 

ECES 352 Winter 2007Ch 13 Oscillators2 Wien Bridge Oscillator *Based on op amp *Combination of R’s and C’s in feedback loop so feedback factor β f has a frequency dependence. *Analysis assumes op amp is ideal. « Gain A is very large « Input currents are negligibly small (I +  I_  0). « Input terminals are virtually shorted (V +  V_ ). *Analyze like a normal feedback amplifier. « Determine input and output loading. « Determine feedback factor. « Determine gain with feedback. *Shunt-shunt configuration. ViVi V0V0 ZSZS ZPZP IfIf R2R2 R1R1

ECES 352 Winter 2007Ch 13 Oscillators3 Wien Bridge Oscillator V i = 0 V0V0 ZSZS ZPZP Input Loading Output Loading Z1Z1 Z2Z2 ZPZP ZPZP ZSZS ZSZS IfIf ViVi V 0 = 0 R2R2 R1R1 Define

ECES 352 Winter 2007Ch 13 Oscillators4 Wien Bridge Oscillator Z1Z1 V0V0 Z2Z2 ISIS ISIS R2R2 R1R1 ISIS Amplifier gain including loading effects Feedback factor IfIf V0V0 ZPZP ZSZS I1I1 I2I2 ViVi

ECES 352 Winter 2007Ch 13 Oscillators5 Wien Bridge Oscillator Loop Gain Oscillation condition

ECES 352 Winter 2007Ch 13 Oscillators6 Wien Bridge Oscillator - Example Oscillator specifications:  o =1x10 6 rad/s

ECES 352 Winter 2007Ch 13 Oscillators7 Wien Bridge Oscillator Final note: No input signal is needed. Noise at the desired oscillation frequency will likely be present at the input and when picked up by the oscillator when the DC power is turned on, it will start the oscillator and the output will quickly buildup to an acceptable level.

ECES 352 Winter 2007Ch 13 Oscillators8 Wien Bridge Oscillator *Once oscillations start, a limiting circuit is needed to prevent them from growing too large in amplitude

ECES 352 Winter 2007Ch 13 Oscillators9 Phase Shift Oscillator *Based on op amp using inverting input *Combination of R’s and C’s in feedback loop so get additional phase shift. Target 180 o to get oscillation. *Analysis assumes op amp is ideal. V0V0 VXVX R I C1 R I C2 I C3 I R1 I R2 IfIf RfRf V1V1 V2V2 CC C

ECES 352 Winter 2007Ch 13 Oscillators10 Phase Shift Oscillator V0V0 VXVX R I C1 R I C2 I C3 I R1 I R2 IfIf RfRf V1V1 V2V2 Example Oscillator specifications:  o =1x10 6 rad/s Note: We get 180 o phase shift from op amp since input is to inverting terminal and another 180 o from the RC ladder. CC C

ECES 352 Winter 2007Ch 13 Oscillators11 Colpitts LC-Tuned Oscillator *Feedback amplifier with inductor L and capacitors C 1 and C 2 in feedback network. « Feedback is frequency dependent. « Aim to adjust components to get positive feedback and oscillation. « Output taken at collector V o. « No input needed, noise at oscillation frequency  o is picked up and amplified. *R B1 and R B2 are biasing resistors. *RFC is RF Choke (inductor) to allow dc current flow for transistor biasing, but to block ac current flow to ac ground. *Simplified circuit shown at midband frequencies where large emitter bypass capacitor C E and base capacitor C B are shorts and transistor capacitances (C  and C  ) are opens. CBCB CECE V0V0 ViVi V0V0 ViVi

ECES 352 Winter 2007Ch 13 Oscillators12 Colpitts LC-Tuned Oscillator *Voltage across C 2 is just V  *Neglecting input current to transistor (I   0), *Then, output voltage V o is *KCL at output node (C) *Setting s = j  AC equivalent circuit I π ≈ 0 sC 2 V  V0V0 Assuming oscillations have started, then V  ≠ 0 and V o ≠ 0, so

ECES 352 Winter 2007Ch 13 Oscillators13 Colpitts LC-Tuned Oscillator *To get oscillations, both the real and imaginary parts of this equation must be set equal to zero. *From the imaginary part we get the expression for the oscillation frequency *From the real part, we get the condition on the ratio of C 2 /C 1

ECES 352 Winter 2007Ch 13 Oscillators14 Colpitts LC-Tuned Oscillator *Given: « Design oscillator at 150 MHz « Transistor g m = 100 mA/V, R = 0.5 K *Design: « Select L= 50 nH, then calculate C 2, and then C 1 Example

ECES 352 Winter 2007Ch 13 Oscillators15 Summary of Oscillator Design *Shown how feedback can be used with reactive components (capacitors) in the feedback path. *Can be used to achieve positive feedback. « With appropriate choice of the resistor sizes, can get feedback signal in phase with the input signal. « Resulting circuit can produce large amplitude sinusoidal oscillations. *Demonstrated three oscillator circuits: « Wien Bridge oscillator « Phase Shift oscillator « Colpitts LC-Tuned oscillator *Derived equations for calculating resistor and capacitor sizes to produce oscillations at the desired oscillator frequency. *Key result: Oscillator design depends primarily on components in feedback network, i.e. not on the amplifier’s characteristics. Wien Bridge Oscillator Phase Shift Oscillator Colpitts LC-Tuned Oscillator