PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM

Slides:



Advertisements
Similar presentations
Electric Fields in Matter
Advertisements

Differential Calculus (revisited):
The divergence of E If the charge fills a volume, with charge per unit volume . R Where d is an element of volume. For a volume charge:
Dr. Charles Patterson 2.48 Lloyd Building
VEKTORANALYS Kursvecka 6 övningar. PROBLEM 1 SOLUTION A dipole is formed by two point sources with charge +c and -c Calculate the flux of the dipole.
Chapter 6 Vector analysis (벡터 해석)
PH0101 UNIT 2 LECTURE 2 Biot Savart law Ampere’s circuital law
ENTC 3331 RF Fundamentals Dr. Hugh Blanton ENTC 3331.
EEE 340Lecture Curl of a vector It is an axial vector whose magnitude is the maximum circulation of per unit area as the area tends to zero and.
Chapter 13-Vector Calculus Calculus, 2ed, by Blank & Krantz, Copyright 2011 by John Wiley & Sons, Inc, All Rights Reserved.
(E&M) – Lecture 4 Topics:  More applications of vector calculus to electrostatics:  Laplacian: Poisson and Laplace equation  Curl: concept and.
EE3321 ELECTROMAGENTIC FIELD THEORY
Vector integrals Line integrals Surface integrals Volume integrals Integral theorems The divergence theorem Green’s theorem in the plane Stoke’s theorem.
1 Math Tools / Math Review. 2 Resultant Vector Problem: We wish to find the vector sum of vectors A and B Pictorially, this is shown in the figure on.
EE3321 ELECTROMAGENTIC FIELD THEORY
Electrostatics Electrostatics is the branch of electromagnetics dealing with the effects of electric charges at rest. The fundamental law of electrostatics.
Magnetostatics Magnetostatics is the branch of electromagnetics dealing with the effects of electric charges in steady motion (i.e, steady current or DC).
Fundamentals of Applied Electromagnetics
Chapter 1 Vector analysis
1.1 Vector Algebra 1.2 Differential Calculus 1.3 Integral Calculus 1.4 Curvilinear Coordinate 1.5 The Dirac Delta Function 1.6 The Theory of Vector Fields.
Method to Use Conservations Laws in Fluid Flows…… P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Mathematics of Reynolds Transport.
Coordinate Systems.
PHY 042: Electricity and Magnetism
Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35ºC Vectors: e.g. velocity: 35mph heading south 3N force toward center.
AOE 5104 Class 4 9/4/08 Online presentations for today’s class: –Vector Algebra and Calculus 2 and 3 Vector Algebra and Calculus Crib Homework 1 Homework.
Darryl Michael/GE CRD Fields and Waves Lesson 2.1 VECTORS and VECTOR CALCULUS.
Vector calculus 1)Differential length, area and volume
ELEN 3371 Electromagnetics Fall Lecture 2: Review of Vector Calculus Instructor: Dr. Gleb V. Tcheslavski Contact:
EED 2008: Electromagnetic Theory Özgür TAMER Vectors Divergence and Stokes Theorem.
Chapter 9 向量分析 (Vector Analysis)
Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College, 6 Jan.2011 Lab II Rm 2272, Winter wk 1 Thursday: Electromagnetism.
UNIVERSITI MALAYSIA PERLIS
Chapter 10 Vector Calculus
Review of Vector Analysis
1 Chapter 2 Vector Calculus 1.Elementary 2.Vector Product 3.Differentiation of Vectors 4.Integration of Vectors 5.Del Operator or Nabla (Symbol  ) 6.Polar.
1 April 14 Triple product 6.3 Triple products Triple scalar product: Chapter 6 Vector Analysis A B C + _.
EEE241: Fundamentals of Electromagnetics
Operators. 2 The Curl Operator This operator acts on a vector field to produce another vector field. Let be a vector field. Then the expression for the.
1 EEE 498/598 Overview of Electrical Engineering Lecture 3: Electrostatics: Electrostatic Potential; Charge Dipole; Visualization of Electric Fields; Potentials;
MAGNETOSTATIK Ampere’s Law Of Force; Magnetic Flux Density; Lorentz Force; Biot-savart Law; Applications Of Ampere’s Law In Integral Form; Vector Magnetic.
EEL 3472 Magnetostatics 1. If charges are moving with constant velocity, a static magnetic (or magnetostatic) field is produced. Thus, magnetostatic fields.
Vector Calculus.
AOE 5104 Class 5 9/9/08 Online presentations for next class:
Dr. Hugh Blanton ENTC Gauss’s Law Dr. Blanton - ENTC Gauss’s Theorem 3 Recall Divergence literally means to get farther apart from a line.
ENE 325 Electromagnetic Fields and Waves Lecture 3 Gauss’s law and applications, Divergence, and Point Form of Gauss’s law 1.
§1.2 Differential Calculus
§1.2 Differential Calculus Christopher Crawford PHY 416G
Methods of Math. Physics Dr. E.J. Zita, The Evergreen State College Lab II Rm 2272, Winter wk 3, Thursday 20 Jan Electrostatics.
Chapter 1 Vector Analysis Gradient 梯度, Divergence 散度, Rotation, Helmholtz’s Theory 1. Directional Derivative 方向导数 & Gradient 2. Flux 通量 & Divergence 3.
Angular Velocity: Sect Overview only. For details, see text! Consider a particle moving on arbitrary path in space: –At a given instant, it can.
1 Vector Calculus. Copyright © 2007 Oxford University Press Elements of Electromagnetics Fourth Edition Sadiku2 Figure 3.1 Differential elements in the.
Wave Dispersion EM radiation Maxwell’s Equations 1.
مفردات منهج الكهرومغناطيسية CH 1: vector analysis Change in Cartesian coordinates systems. Change of axis (Rotation Matrices). Field and differential operators.
Operators in scalar and vector fields
CALCULUS III CHAPTER 5: Orthogonal curvilinear coordinates
§1.3 Integrals Flux, Flow, Subst Christopher Crawford PHY
(i) Divergence Divergence, Curl and Gradient Operations
Chapter 2 Vector Calculus
Vector integration Linear integrals Vector area and surface integrals
Chapter 6 Vector Analysis
ECE 305 Electromagnetic Theory
Soh Ping Jack, Azremi Abdullah Al-Hadi, Ruzelita Ngadiran
Second Derivatives The gradient, the divergence and the curl are the only first derivatives we can make with , by applying twice we can construct.
Chapter 3. Gauss’ law, Divergence
Partial Derivative - Definition
1.4 Curvilinear Coordinates Cylindrical coordinates:
Fields and Waves I Lecture 8 K. A. Connor Y. Maréchal
Chapter 6 Vector Analysis
Electricity and Magnetism I
Fundamentals of Applied Electromagnetics
Presentation transcript:

PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM Introduction to Electrodynamics: by David J. Griffiths (3rd Ed.) Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) VECTOR ANALYSIS Differential Calculus Integral Calculus Revisited Curvilinear Coordinates The Dirac Delta Function Theory of Vector Fields Dr. Champak B. Das ( BITS, Pilani)

Differential Calculus Derivative of any function f(x,y,z): Dr. Champak B. Das ( BITS, Pilani)

Gradient of function f  f is a VECTOR Change in a scalar function f corresponding to a change in position : Gradient of function f  f is a VECTOR Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Geometrical interpretation of Gradient Z P Q dl Y change in f : X =0 => f  dl Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Z Q dl P Y X Dr. Champak B. Das ( BITS, Pilani)

The rate of change of f is max. for The max. value of rate of change of f is f increases in the direction of Grad f is in the direction of the normal to the surface of constant f Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Gradient of a function slope of the function along the direction of maximum rate of change of the function Dr. Champak B. Das ( BITS, Pilani)

If  f = 0 at some point (x0,y0,z0) => df = 0 for small displacements about the point (x0,y0,z0) (x0,y0,z0) is a stationary point of f(x,y,z) Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.12 The height of a certain hill (in feet) is: h(x,y) = 10(2xy – 3x2 -4y2 -18x + 28y +12) where x is distance (in mile) east and y north of Pilani. (a) Where is the top located ? Ans: 3 miles North & 2 miles West Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.12 (contd.) h(x,y) = 10(2xy – 3x2 -4y2 -18x – 28y +12) (b) How high is the hill ? Ans: 720 ft (c) How steep is the slope at 1 mile north and 1 mile east of Pilani? In what direction the slope is steepest, at that point ? Ans: 311 ft/mile, direction is Northwest Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.13 Let rs is the separation vector from (x,y,z) to (x,y,z) . Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) The Operator   is NOT a VECTOR, but a VECTOR OPERATOR Satisfies: Vector rules Partial differentiation rules Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani)  can act: On a scalar function f : f GRADIENT On a vector function F as: . F DIVERGENCE On a vector function F as:  × F CURL Dr. Champak B. Das ( BITS, Pilani)

Divergence of a vector Divergence of a vector is a scalar. Dr. Champak B. Das ( BITS, Pilani)

Geometrical interpretation of Divergence .F is a measure of how much the vector F spreads out/in (diverges) from/to the point in question. Dr. Champak B. Das ( BITS, Pilani)

Physical interpretation of Divergence Flow of a compressible fluid: (x,y,z)  density of the fluid at a point (x,y,z) v(x,y,z)  velocity of the fluid at (x,y,z) Z X Y dy dx dz A C D B E F G H Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Net rate of flow out through all pairs of surfaces (per unit time): Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Net rate of flow of the fluid per unit volume per unit time: DIVERGENCE Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Example: Calculate, Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.16 Sketch the vector function and compute its divergence. Explain the answer ! ! Dr. Champak B. Das ( BITS, Pilani)

Curl Curl of a vector is a vector Dr. Champak B. Das ( BITS, Pilani)

Geometrical interpretation of Curl ×F is a measure of how much the vector F “curls around” the point in question. Dr. Champak B. Das ( BITS, Pilani)

Physical significance of Curl Circulation of a fluid around a loop about a point : Y 3 2 y 4 1 x X Circulation Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Circulation per unit area z-component of CURL Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Sum Rules For Gradient: For Divergence: For Curl: Dr. Champak B. Das ( BITS, Pilani)

Rules for multiplying by a constant For Gradient: For Divergence: For Curl: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Product Rules For a Scalar from two functions: Gradients: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Product Rules For a Vector from two functions: Divergences: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Product Rules Curls: Dr. Champak B. Das ( BITS, Pilani)

Prob. 1.21 (a) Prob. 1.21 (b) Ans: What does the expression mean ? Compute: Ans: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Quotient Rules Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Second Derivatives Of a gradient: Divergence : Laplacian Curl : ( Prob. 1.27: Prove it ! ) Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Second Derivatives Of a divergence: Gradient : Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Second Derivatives Of a Curl: Divergence : Prob. 1.26: Prove it ! Curl : Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Integral Calculus Line Integral: Surface Integral: Volume Integral: Dr. Champak B. Das ( BITS, Pilani)

Fundamental theorem for gradient Line integral of gradient of a function is given by the value of the function at the boundaries of the line. Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Corollary 1: Corollary 2: Dr. Champak B. Das ( BITS, Pilani)

Fundamental theorem for Divergence The integral of divergence of a vector over a volume is equal to the value of the function over the closed surface that bounds the volume. Gauss’ theorem, Green’s theorem Dr. Champak B. Das ( BITS, Pilani)

Fundamental theorem for Curl Integral of a curl of a vector over a surface is equal to the value of the function over the closed boundary that encloses the surface. Stokes’ theorem Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Corollary 1: Corollary 2: Dr. Champak B. Das ( BITS, Pilani)

Curvilinear coordinates: used to describe systems with symmetry. Spherical Polar coordinates (r, , ) Cylindrical coordinates (s, , z) Dr. Champak B. Das ( BITS, Pilani)

Spherical Polar Coordinates A point is characterized by: r : distance from origin Z  : polar angle P r   : azimuthal angle Y  X Dr. Champak B. Das ( BITS, Pilani)

Cartesian coordinates in terms of spherical coordinates: Z P r  Y  X Dr. Champak B. Das ( BITS, Pilani)

Spherical coordinates in terms of Cartesian coordinates: Z P r  Y  X Dr. Champak B. Das ( BITS, Pilani)

Unit vectors in spherical coordinates Prob. 1.37 : Unit vectors in spherical coordinates Z r  Y  X Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Line element in spherical coordinates: Volume element in spherical coordinates: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Area element in spherical coordinates: on a surface of a sphere (r const.) on a surface lying in xy-plane ( const.) Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Ranges of r,  and  r : 0    : 0    : 0  2 Dr. Champak B. Das ( BITS, Pilani)

The Operator  in Spherical Polar Coordinates Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Gradient: Divergence: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Curl: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Laplacian: Dr. Champak B. Das ( BITS, Pilani)

Cylindrical Coordinates A point is characterized by: s : distance from z-axis Z z : cartesian coordinate s P  : azimuthal angle z Y  X Dr. Champak B. Das ( BITS, Pilani)

Prob. 1.41 : Unit vectors in cylindrical coordinates Z s z Y  X Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Line element in cylindrical coordinates: Volume element in cylindrical coordinates: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Ranges of s,  and z s : 0    : 0  2 z : -    Dr. Champak B. Das ( BITS, Pilani)

The Operator  in Cylindrical Coordinates Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Gradient: Divergence: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Curl: Laplacian: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) General expressions for the Derivatives in different coordinate systems u, v, w Coordinate System: Line element : Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) System u v w f g h Cartesian x y z 1 Spherical r   r sin Cylindrical s Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) GRADIENT Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) DIVERGENCE Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) CURL : Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) LAPLACIAN Dr. Champak B. Das ( BITS, Pilani)

Recall  Prob. 1.16 Sketch the vector function and compute its Divergence Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Calculation of Divergence => Divergence theorem => Dr. Champak B. Das ( BITS, Pilani)

And its integral over ANY volume containing the point r = 0 Note: as r  0; v  ∞ And its integral over ANY volume containing the point r = 0 Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) THE DIRAC DELTA FUNCTION Dr. Champak B. Das ( BITS, Pilani)

The Dirac Delta Function An infinitely high, infinitesimally narrow “spike” with area 1  Dirac Delta Function is NOT a Function Dr. Champak B. Das ( BITS, Pilani)

A Generalized Function OR distribution The Defining Characteristic Integral : A Generalized Function OR distribution Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Delta function is something that is always intended for use under an integral sign. Let D1(x) & D2(x) are two expressions involving Delta functions and f(x) is any ordinary function Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) One can show: ………..for a proof, see Example 1.15 Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) The Dirac Delta Function Shifting the singularity from 0 to a; Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) The Dirac Delta Function & the Defining Characteristic Integral : Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.43: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.45 : Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) THE DIRAC DELTA FUNCTION Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) The Dirac Delta Function Shifting the singularity from 0 to a; Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) The Dirac Delta Function (in three dimension) Dr. Champak B. Das ( BITS, Pilani)

Why such a function ? Describe very short range forces as nuclear force Describe a point particle in terms of a mass density Describe a point charge in terms of a charge density Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.46: Charge density of a point charge q at r : Charge density of a dipole with -q at 0 and +q at a: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Prob. 1.46: (contd.) Charge density of a thin spherical shell of radius R and total charge Q: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) The Paradox of Divergence of From calculation of Divergence: By using the Divergence theorem: Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) So now we can write: Such that: Dr. Champak B. Das ( BITS, Pilani)

Theory of Vector Fields By specifying appropriate boundary conditions, Helmholtz theorem implies that the field can be uniquely determined from its divergence and curl. Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Potentials THEOREM 1: ( For Curl-less fields ) Dr. Champak B. Das ( BITS, Pilani)

Conclusions from theorem 1 If curl of a vector field vanishes, (everywhere), then the field can always be written as the gradient of a scalar potential ( not unique ) Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Potentials THEOREM 2: For Divergence-less fields Dr. Champak B. Das ( BITS, Pilani)

Conclusions from theorem 2 If divergence of a vector field vanishes, (everywhere), then the field can always be written as the curl of a vector potential ( not unique ) Dr. Champak B. Das ( BITS, Pilani)

Dr. Champak B. Das ( BITS, Pilani) Helmholtz theorem: Any vector field F with both source and circulation densities vanishing at infinity may be written as the sum of two parts: one of which is curl-less and the other is divergence-less. (Always) Dr. Champak B. Das ( BITS, Pilani)