Chapter 9 Two-Dimensional Solution

Slides:



Advertisements
Similar presentations
Chapter 9 Extension, Torsion and Flexure of Elastic Cylinders
Advertisements

Chapter 8 Two-Dimensional Problem Solution
第九章 重积分 返回 高等数学( XAUAT ) 典型例题 重点难点 练习题解答 习题课结构 高等数学( XAUAT ) 一、本章的重点、难点、此次 习题课达到的目的 重点:二重积分、三重积分的计算。 难点:二从重积分、三重积分计算中坐标系的选择,积分 次序的选择与定限 习题课达到的目的:熟练掌握二重积分的计算(直角坐标、
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
第八章 多元函数微分法 及其应用 返回 高等数学( XAUAT ) 练习题 解答 练习题 解答 重点难点 基本概念 计算方法 练习题 典型例题 定理结论 习题课结构.
基本知识和几何要素的投影 模块一: 字体练习 第一章 制图的基本知识与基本技能 题目提示返回.
3 Torsion.
Fundamentals of Elasticity Theory
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
3 .计算题(原创) 草酸的分布分数图为 图中 A , B , C , D 四点的关系如何?请用数学推导进行说 明。
2.2 结构的抗力 抗力及其不定因素 材料强度的标准值 材料强度的设计值.
Formulation of Two-Dimensional Elasticity Problems
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
例9:例9: 第 n-1 行( -1 )倍加到第 n 行上,第( n-2 ) 行( -1 )倍加到第 n-1 行上,以此类推, 直到第 1 行( -1 )倍加到第 2 行上。
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
演講者:蕭錫源 A new BEM formulation for transient axisymmetric poroelasticity via particular integrals K.H. Park a, P.K. Banerjee b,*
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
Theory of Elasticity Theory of elasticity governs response – Symmetric stress & strain components Governing equations – Equilibrium equations (3) – Strain-displacement.
Application Solutions of Plane Elasticity
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
CHAP 6 FINITE ELEMENTS FOR PLANE SOLIDS
1 第二章 化工设备强度计算基础 教学重点: 薄膜理论及其应用 教学难点: 对容器的基本感性认识.
第二十四讲 相位延时系统 相位超前系统 全通系统. 一、最小与最大相位延时系统、最小 与最大相位超前系统 LSI 系统的系统函数: 频率响应:
3 Torsion.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
ANALYSIS OF STRESS DISTRIBUTION IN ROOTS OF BOLT THREADS Gennady Aryassov, Andres Petritshenko Tallinn University of Technology Department of Mechatronics.
Chapter 5 Formulation and Solution Strategies
Chapter 7 Two-Dimensional Formulation
Chapter 11 Bending of Thin Plates 薄板弯曲
固体力学基础 张俊乾 近代力学基础 第二讲 固体力学基础 张俊乾
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
ME 520 Fundamentals of Finite Element Analysis
Introduction to Automatic Control The Laplace Transform Li Huifeng Tel:
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
9 Torsion.
Mechanics of Thin Structure Lecture 15 Wrapping Up the Course Shunji Kanie.
1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform.
Part One Mechanics 力学 Part One Mechanics 力学. Chapter 1 Kinematics ( 质点 ) 运动学.
Chapter 6 Unit 5 定积分的几何应用定积分的几何应用. This section presents various geometric applications of the definite integral. We will show that area, volume and length.
Chapter 6. Plane Stress / Plane Strain Problems
Chapter 4 Axial Load. Saint -Venant's Principle Saint-Venant's Principle claims that localized effects caused by any load acting on a body will dissipate.
Kinematics 一、运动学的研究对象及任务 1 .研究对象 Point(particle), Rigid body and System of Rigid Bodies. Point: 不计大小的几何点. 2 .研究任务 (1) 研究物体的机械运动及运动 的几何性质。 (2) 研究机构传动规律。
1 Signals and Systems Lecture 26 Properties of Laplace Transform Analysis LTI System using LT System Function.
退 出退 出退 出退 出 上一页 下一页 一、正多边形的画法 1. 正六边形 §1-3 几何作图 ( 1 )根据对角线长度作图   利用外接圆半径作图.
第三章 正弦交流电路.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
Summary of Curved Solids 曲曲曲曲 面面面面 立立立立 体体体体 概概概概 述述述述 Right Cylinder 圆圆圆圆 柱柱柱柱 体体体体 Cone 圆圆圆圆 锥锥锥锥 体体体体 Sphere 圆圆圆圆 球球球球 体体体体Exercise 练练练练 习习习习 题题题题.
Theory of Elasticity 弹性力学
1 HOW MANY ELEMENTS? How to choose element size? –Critically important in obtaining good results –Mesh refinement improves solution accuracy. –How small.
§6 Earth Pressure and Retaining Wall 土压力理论与挡土墙设计 Introduction/ 引言 Rankine’s earth pressure theory / 朗肯土压力理论 Coulomb’s earth pressure theory / 库仑土压力理论.
3D 仿真机房建模 哈尔滨工业大学 指导教师:吴勃英、张达治 蒋灿、杜科材、魏世银 机房尺寸介绍.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
Innovation Intelligence ® Workshop – Riser VIV. Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. 学习内容 实用流固耦合的设置方法.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
Theory of Elasticity 弹性力学 Chapter 7 Two-Dimensional Formulation 平面问题基本理论.
一、弧微分 规定:   单调增函数 如图,   弧微分公式 二、曲率及其计算公式 曲率是描述曲线局部性质(弯曲程度)的量. ) ) 弧段弯曲程度 越大转角越大 转角相同弧段越 短弯曲程度越大 1 、曲率的定义 )
Plane Strain and Plane Stress
Theory of Elasticity Chapter 10 Three-Dimensional Problems.
The Thick Walled Cylinder
Continuum Mechanics (MTH487)
The Thick Walled Cylinder
3 Torsion.
Review for Final Exam Basic knowledge of vector & index notation, matrix-tensor theory, coordinate transformation, principal value problems, vector calculus.
3 Torsion.
UNIT – III FINITE ELEMENT METHOD
Presentation transcript:

Chapter 9 Two-Dimensional Solution Theory of Elasticity Chapter 9 Two-Dimensional Solution

Content Theory of Elasticity Introduction Mathematical Preliminaries Chapter Page Content Introduction Mathematical Preliminaries Stress and Equilibrium Displacements and Strains Material Behavior- Linear Elastic Solids Formulation and Solution Strategies Two-Dimensional Problems Introduction to Finite Element Method Three-Dimensional Problems Bending of Thin Plates 9 1

Two-Dimensional Solution in Polar Coordinate Theory of Elasticity Chapter Page Two-Dimensional Solution in Polar Coordinate 9.1 Polar Coordinate Formulation(极坐标下的求解) 9.2 Coordinate Transformation of Stress Components (应力分量的坐标变换) 9.3 Axisymmetrial stresses and corresponding displacements(轴对称应力和位移) 9.4 Hollow cylinder subjected to uniform pressures (圆环受均布压力) 9.5 Stress concentration of the circular hole(圆孔的孔口应力集中) 9 2

Two-Dimensional Solution in Polar Coordinate Theory of Elasticity Chapter Page Two-Dimensional Solution in Polar Coordinate Some symmetry and circular structure Aeroengine and its rotor system Practical Engineering need solutions in polar coordinate 9 3

Two-Dimensional Solution in Polar Coordinate Theory of Elasticity Chapter Page Two-Dimensional Solution in Polar Coordinate Stress Concentration in Practical Engineering First civil airline Comet: May 2nd,1953 , London-Johnston Air disaster: Jan.10,1954, and April 8,1954 9 4

Two-Dimensional Solution in Polar Coordinate Theory of Elasticity Chapter Page Two-Dimensional Solution in Polar Coordinate Stress Concentration is the main reason that cause the air disasters 9 5

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Polar Coordinates 9 6

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Polar Coordinates 9 7

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Basic Equations in Polar Coordinates(极坐标下的基本方程) Stresses Laplace operators Biharmonic operators 9 8

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Equilibrium Equations(平衡方程) x y O P A B C 9 9

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Geometrical Equations几何方程 9 10

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Physical Equations物理方程 Plain Stress Plain Strain 9 11

9.1 Polar Coordinate Formulation Theory of Elasticity Chapter Page 9.1 Polar Coordinate Formulation Boundary Conditions(边界条件) l r 9 12

9.2 Coordinate Transformation of Stress Components Theory of Elasticity Chapter Page 9.2 Coordinate Transformation of Stress Components Polar Coordinate  Cartesian Coordinate Cartesian Coordinate  Polar Coordinate 9 13

9.3 Axisymmetrial stresses and corresponding displacements(轴对称应力和位移) Theory of Elasticity Chapter Page 9.3 Axisymmetrial stresses and corresponding displacements(轴对称应力和位移) axisymmetric field quantities are independent of the angular coordinate √ X 9 14

9.3 Axisymmetrial stresses and corresponding displacements Theory of Elasticity Chapter Page 9.3 Axisymmetrial stresses and corresponding displacements axisymmetric axisymmetric case axisymmetric case 9 15

9.3 Axisymmetrial stresses and corresponding displacements Theory of Elasticity Chapter Page 9.3 Axisymmetrial stresses and corresponding displacements Michell solution of the biharmonic equation Plane stress case H,I,K associated with the rigid-body motion 9 16

9.3 Axisymmetrial stresses and corresponding displacements Theory of Elasticity Chapter Page 9.3 Axisymmetrial stresses and corresponding displacements Function of “hole” on distribution No hole: A and B vanish. Otherwise when r=0, stress component become infinite A plate without a hole with no body forces (axissymmetrical) If there is hole at the origin, we will investigate it next 9 17

9.4 Hollow cylinder subjected to uniform pressures Theory of Elasticity Chapter Page 9.4 Hollow cylinder subjected to uniform pressures plane stress conditions Axisymmetric problem Boundary Conditions 9 18

9.4 Hollow cylinder subjected to uniform pressures Theory of Elasticity Chapter Page 3 unknowns, 2 Equations ? Single or multiply connected region? for multiply connected regions, the compatibility equations are not sufficient to guarantee single-valued displacements. B = 0 9 19

9.4 Hollow cylinder subjected to uniform pressures Theory of Elasticity Chapter Page 9.4 Hollow cylinder subjected to uniform pressures B = 0 9 20

9.4 Hollow cylinder subjected to uniform pressures Theory of Elasticity Chapter Page Demonstration of Saint-Venant’s Principle 9 21

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Review: 9 22

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole What is stress concentration? The stress concentration near a hole is a critical issue concerning the strength of a solid structure. The stress concentration can be measured by the stress concentration coefficients that are the ratios between the most severe stress at the critical point (or termed hot spot) and the remote stress. 9 23

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Examples: 9 24

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Solution: Selection of coordinate To analyse stress concentration near the hole, it is convenient to use polar coordinate. Problem in polar coordinate Boundary conditions in polar coordinate: A A 9 25

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole b Problem in polar coordinate 9 26

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole b a Problem 1 Problem in polar coordinate b = Problem 2 + b a 9 27

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Solution of Problem 1 b a B.C. when b>>a 9 28

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Problem 2 Solution of Problem 2 b a 由边界条件可假设: σr为 r 的某一函数乘以cos2θ ;τr θ 为r 的某一函数乘sin2θ。 Assume: 9 29

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole 9 30

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole b a B.C. 9 31

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Superposition of Solution 1and 2 G. Kirsch Solution 9 32

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole x y q1 x y q1 q2 x y q2 9 33

9.5 Stress concentration of the circular hole Theory of Elasticity Chapter Page 9.5 Stress concentration of the circular hole Stress concentration of ellipse hole x y q 2a 2b 9 34

Theory of Elasticity Chapter Page Homework 4-8 4-13 4-15 4-16 9 35

期中考试 Theory of Elasticity 2005年11月23日,下午6:00-8:00 Chapter Page 期中考试 2005年11月23日,下午6:00-8:00 地点:(三)218 (一班、二班、三班前15号) (三)202 (三班16号以后,四班,七班)