Wednesday, Oct. 6, 2004PHYS 1443-003, Fall 2004 Dr. Jaehoon Yu 1 1.Work done by a constant force 2.Scalar Product of Vectors 3.Work done by a varying force.

Slides:



Advertisements
Similar presentations
1 Chapter Four Newton's Laws. 2  In this chapter we will consider Newton's three laws of motion.  There is one consistent word in these three laws and.
Advertisements

Monday, June 23, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Monday, June 23, 2014 Dr. Jaehoon Yu Newton’s Law.
Kinetic energy. Energy Energy is usually defined as the capacity to do work. One type of energy is kinetic energy.
The concept of energy (and the conservation of energy – chapter 8) is one of the most important topics in physics. Work Kinetic energy Energy approach.
Physics Instructor: Dr. Tatiana Erukhimova Lecture 6.
Kinetic energy Vector dot product (scalar product) Definition of work done by a force on an object Work-kinetic-energy theorem Lecture 10: Work and kinetic.
Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Oct. 20, 2010 Dr. Jaehoon Yu Motion in.
Tuesday, Sept. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #11 Tuesday, Sept. 30, 2014 Dr. Jaehoon Yu Newton’s Law.
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
Tuesday, June 30, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Tuesday, June 30, 2015 Dr. Jaehoon Yu Newton’s Law.
PHYS 1443 – Section 001 Lecture #12 Monday, March 21, 2011 Dr. Jaehoon Yu Today’s homework is homework #7, due 10pm, Tuesday, Mar. 29!! Work and Energy.
Wednesday, Feb. 18, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #9 Wednesday, Feb. 18, 2004 Dr. Jaehoon Yu Chapter.
Chapter 7 Energy of a System. Introduction to Energy A variety of problems can be solved with Newton’s Laws and associated principles. Some problems that.
Chapter 7 Energy of a System. The concept of energy is one of the most important topics in science and engineering Every physical process that occurs.
PHYS 1441 – Section 002 Lecture #15 Monday, March 18, 2013 Dr. Jaehoon Yu Work with friction Potential Energy Gravitational Potential Energy Elastic Potential.
Wednesday, July 1, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Wednesday, July 1, 2015 Dr. Jaehoon Yu Work-Kinetic.
Wednesday, June 18, 2014 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 18, 2014 Dr. Jaehoon Yu Newton’s.
Monday, Oct. 6, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #11 Newton’s Law of Gravitation Kepler’s Laws Work Done by.
Monday, Mar. 24, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #16 Monday, Mar. 24, 2008 Dr. Jaehoon Yu Potential Energy.
Tuesday, June 24, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Tuesday, June 24, 2014 Dr. Jaehoon Yu Work done by.
Energy and Energy Conservation. Energy Two types of Energy: 1. Kinetic Energy (KE) - energy of an object due to its motion 2. Potential Energy (PE) -
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Monday, June 22, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 22, 2015 Dr. Jaehoon Yu Newton’s Second.
Monday, Oct. 25, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Oct. 25, 2010 Dr. Jaehoon Yu Work – Kinetic.
7.4) Kinetic Energy andThe Work-Kinetic Energy Theorem Figure (7.13) - a particle of mass m moving to the right under the action of a constant net force.
Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #10 Monday, Oct. 11, 2010 Dr. Jaehoon Yu Force of Friction.
Friction Ffriction = μFNormal.
Spring 2002 Lecture #13 Dr. Jaehoon Yu 1.Rotational Energy 2.Computation of Moments of Inertia 3.Parallel-axis Theorem 4.Torque & Angular Acceleration.
Work and Energy Chapter 5 pg Chapter 12 pg
Tuesday, June 24, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Tuesday, June 24, 2014 Dr. Jaehoon Yu Work done by.
Tuesday June 14, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #8 Tuesday June 14, 2005 Dr. Andrew Brandt Accelerated.
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
Monday, June 20, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #9 Monday, June 20, 2011 Dr. Jaehoon Yu Work Done By A.
Wednesday, Mar. 12, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #15 Wednesday, Mar. 12, 2008 Dr. Jaehoon Yu Work done.
Wednesday, Mar. 3, PHYS , Spring 2004 Dr. Andrew Brandt PHYS 1443 – Section 501 Lecture #12 Newton’s Law of Gravitation and Kepler’s Laws.
Work Readings: Chapter 11.
Wednesday June 15, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #9 Wednesday June 15, 2005 Dr. Andrew Brandt Lightning.
Monday, June 9, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Monday, June 9, 2008 Dr. Jaehoon Yu Exam problem solving.
Thursday, Oct. 2, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #12 Thursday, Oct. 2, 2014 Dr. Jaehoon Yu Work-Kinetic.
Wednesday, Oct. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #11 Wednesday, Oct. 10, 2007 Dr. Jaehoon Yu Free Fall.
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
PHYS 1443 – Section 001 Lecture #8 Wednesday, February 23, 2011 Dr. Jaehoon Yu Application of Newton’s Laws –Motion with friction Uniform Circular Motion.
 Work  Energy  Kinetic Energy  Potential Energy  Mechanical Energy  Conservation of Mechanical Energy.
Wednsday, Oct. 9, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #8 Monday, Oct. 9, 2002 Dr. Jaehoon Yu 1.Power 2.Potential.
Monday, Sept. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Laws of Motion Gravitational Force and Weight Newton’s third law of motion 2.Application.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, Oct. 29, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Oct. 29, 2002 Dr. Jaehoon Yu 1.Rolling.
Wednesday, Mar. 3, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #8 Monday, June 28, 2004 Dr. Jaehoon Yu Work done by.
Monday, Oct. 1, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Monday, Oct. 1, 2007 Dr. Jaehoon Yu Free Body Diagram.
PHY 151: Lecture 7A 7.1 System and Environments 7.2 Work Done by a Constant Force 7.3 Scalar Product of Two Vectors 7.4 Work Done by a Varying Force 7.5.
PHYS 1441 – Section 002 Lecture #11 Monday, Feb. 25, 2013 Dr. Jaehoon Yu Application of Newton’s Laws Motion without friction Force of Friction Motion.
Monday, Mar. 30, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #14 Monay, Mar. 30, 2009 Dr. Jaehoon Yu Work-Kinetic Energy.
Wednesday, Oct. 1, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Wednesday, Oct. 1, 2008 Dr. Jaehoon Yu Free Body.
Tuesday, June 12, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #9 Tuesday, June 12, 2007 Dr. Jaehoon Yu Motion in Accelerated.
PHYS 1441 – Section 002 Lecture #14 Wednesday, March 6, 2013 Dr. Jaehoon Yu Work done by a constant force Scalar Product of the Vector Work with friction.
PHYS 1441 – Section 002 Lecture #10
Physics 111: Mechanics Lecture 5
PHYS 1443 – Section 002 Lecture #12
PHYS 1443 – Section 002 Lecture #12
PHYS 1443 – Section 001 Lecture #12
PHYS 1443 – Section 003 Lecture #12
PHYS 1443 – Section 501 Lecture #19
Chapter 7: Work; Energy of a System
PHYS 1441 – Section 001 Lecture # 9
PHYS 1443 – Section 001 Lecture #11
PHYS 1443 – Section 003 Lecture #11
PHYS 1443 – Section 003 Lecture #13
Work, Energy, Power.
PHYS 1443 – Section 003 Lecture #10
PHYS 1441 – Section 501 Lecture #8
Presentation transcript:

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Work done by a constant force 2.Scalar Product of Vectors 3.Work done by a varying force 4.Work and Kinetic Energy Theorem 5.Potential Energy PHYS 1443 – Section 003 Lecture #12 Wednesday, Oct. 6, 2004 Dr. Jaehoon Yu Homework #7 due at 1pm next Wednesday, Oct. 13!!

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 2 x y Work Done by a Constant Force Work in physics is done only when a sum of forces exerted on an object made a motion to the object. M F  Free Body Diagram M d  Which force did the work?Force How much work did it do? What does this mean? Physical work is done only by the component of the force along the movement of the object. Unit? Work is an energy transfer!!

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 3 Example of Work w/ Constant Force A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F=50.0N at an angle of 30.0 o with East. Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced by 3.00m to East. Does work depend on mass of the object being worked on? M F   M d Yes Why don’t I see the mass term in the work at all then? It is reflected in the force. If the object has smaller mass, its would take less force to move it the same distance as the heavier object. So it would take less work. Which makes perfect sense, doesn’t it?

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 4 Scalar Product of Two Vectors Product of magnitude of the two vectors and the cosine of the angle between them Operation is commutative Operation follows distribution law of multiplication How does scalar product look in terms of components? Scalar products of Unit Vectors =0

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 5 Example of Work by Scalar Product A particle moving in the xy plane undergoes a displacement d =(2.0 i +3.0 j )m as a constant force F =(5.0 i +2.0 j ) N acts on the particle. a) Calculate the magnitude of the displacement and that of the force. b) Calculate the work done by the force F. Y X d F Can you do this using the magnitudes and the angle between d and F ?

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 6 Work Done by Varying Force If the force depends on position of the object through the motion –one must consider work in small segments of the position where the force can be considered constant –Then add all work-segments throughout the entire motion (x i  x f ) –If more than one force is acting, the net work is done by the net force In the limit where  x  0 One of the forces depends on position is force by a spring The work done by the spring force is

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 7 Kinetic Energy and Work-Kinetic Energy Theorem Some problems are hard to solve using Newton’s second law –If forces exerting on the object during the motion are so complicated –Relate the work done on the object by the net force to the change of the speed of the object M FF M d vivi vfvf Suppose net force  F was exerted on an object for displacement d to increase its speed from v i to v f. The work on the object by the net force  F is DisplacementAcceleration Work Kinetic Energy Work The work done by the net force caused change of object’s kinetic energy. Work-Kinetic Energy Theorem

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 8 Example of Work-KE Theorem A 6.0kg block initially at rest is pulled to East along a horizontal, frictionless surface by a constant horizontal force of 12N. Find the speed of the block after it has moved 3.0m. Work done by the force F is From the work-kinetic energy theorem, we know Since initial speed is 0, the above equation becomes M F M d v i =0 vfvf Solving the equation for v f, we obtain

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 9 Work and Energy Involving Kinetic Friction What do you think the work looks like if there is friction? –Why doesn’t static friction matter? M M d vivi vfvf Friction force F fr works on the object to slow down The work on the object by the friction F fr is The final kinetic energy of an object, taking into account its initial kinetic energy, friction force and other source of work, is F fr t=0, KE i Friction, Engine work t=T, KE f Because it isn’t there while the object is moving.

Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 10 Example of Work Under Friction A 6.0kg block initially at rest is pulled to East along a horizontal surface with coefficient of kinetic friction  k =0.15 by a constant horizontal force of 12N. Find the speed of the block after it has moved 3.0m. Work done by the force F is Thus the total work is M F M d=3.0m v i =0 vfvf Work done by friction F k is FkFk Using work-kinetic energy theorem and the fact that initial speed is 0, we obtain Solving the equation for v f, we obtain