Electrons at Saturn’s moons: selected CAPS-ELS results A.J. Coates 1,2. G.H. Jones 1,2, C.S.Arridge 1,2, A. Wellbrock 1,2, G.R. Lewis 1,2, D.T. Young 3,

Slides:



Advertisements
Similar presentations
Observations of plasma sheet structure and dynamics Chris Arridge 1,2 1.Mullard Space Science Laboratory, UCL. 2.The Centre for Planetary Sciences at UCL/Birkbeck.
Advertisements

Evidence at Saturn for an Inner Magnetospheric Convection Pattern, Fixed in Local Time M. F. Thomsen (1), R. L. Tokar (1), E. Roussos (2), M. Andriopoulou.
Searching for N 2 And Ammonia In Saturn's Inner Magnetosphere Polar Gateways Arctic Circle Sunrise 2008 Polar Gateways Arctic Circle Sunrise January.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Titan’s Thermospheric Response to Various Plasma Environments Joseph H. Westlake Doctoral Candidate The University of Texas at San Antonio Southwest Research.
Observation of Auroral-like Peaked Electron Distributions at Mars D.A. Brain, J.S. Halekas, M.O. Fillingim, R.J. Lillis, L.M. Peticolas, R.P. Lin, J.G.
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
Planetary Ionospheres Lecture 16
Ionospheric photoelectrons at Venus: ASPERA-4 observations A.J. Coates 1,2 S.M.E. Tsang 1,2, R.A. Frahm 3, J.D. Winningham 3, S. Barabash 4, R. Lundin.
Expected Influence of Crustal Magnetic Fields on ASPERA-3 ELS Observations: Insight from MGS D.A. Brain, J.G. Luhmann, D.L. Mitchell, R.P. Lin UC Berkeley.
Observations of Open and Closed Magnetic Field Lines at Mars: Implications for the Upper Atmosphere D.A. Brain, D.L. Mitchell, R. Lillis, R. Lin UC Berkeley.
SATURN’S MYSTERIOUS MOON TITAN
Mercury’s Atmosphere: A Surface-bound Exosphere Virginia Pasek PTYS 395.
Use of Martian Magnetic Field Topology as an Indicator of the Influence of Crustal Sources on Atmospheric Loss D.A. Brain, D.L. Mitchell, R. Lillis, R.
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
Julie A. Feldt CEDAR-GEM workshop June 26 th, 2011.
CHARM telecon November 30, 2004 The Cassini-Huygens Analysis and Results of the Mission (CHARM) November 30, 2004 Saturn's Magnetic Bubble Frank Crary.
A. Milillo, and the GENIE Team. Golden Age of of Solar System Exploration Ganymede’s and Europa’s Neutral Imaging Experiment (GENIE) GENIE is a high-angular-resolution.
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
Observations of a structured ionospheric outflow plume at Titan EGU General Assembly Vienna, Austria 3-8 April 2011 Z66 EGU Abstract Recent results.
1 Origin of Ion Cyclotron Waves in the Polar Cusp: Insights from Comparative Planetology Discovery by OGO-5 Ion cyclotron waves in other planetary magnetospheres.
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
Magnetosphere-Ionosphere coupling processes reflected in
14 May JIM M. RAINES University of Michigan DANIEL J. GERSHMAN, THOMAS H. ZURBUCHEN, JAMES A. SLAVIN, HAJE KORTH, and BRIAN J. ANDERSON Magnetospheric.
Structure and dynamics of induced plasma tails César L. Bertucci Presented by Oleg Vaisberg Institute for Astronomy and Space Physics, Buenos Aires, Argentina.
Multi-fluid MHD Study on Ion Loss from Titan’s Atmosphere Y. J. Ma, C. T. Russell, A. F. Nagy, G. Toth, M. K. Dougherty, A. Wellbrock, A. J. Coates, P.
Hill et al.MOP Conference, Boston, 11 July Charged Nanograins in the Enceladus Plume Tom Hill, Rice Univ. Michelle Thomsen, LANL Robert Tokar, LANL.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
Localized Thermospheric Energy Deposition Observed by DMSP Spacecraft D. J. Knipp 1,2, 1 Unversity of Colorado, Boulder, CO, USA 2 High Altitude Observatory,
In Situ Measurements of Auroral Acceleration Regions Wu Tong
Cold plasma: a previously hidden solar system particle population Mats André and Chris Cully Swedish Institute of Space Physics, Uppsala.
Influence of negatively charged plume grains on the structure of Enceladus' Alfven wings: hybrid simulations versus Cassini MAG data Hendrik Kriegel
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Saturn neutral particle modeling Overview of Enceladus/Titan research with possible application to Mercury Johns Hopkins University Applied Physics Laboratory.
Quarterly 17/18/2007 INMS Team Fourth Quarter Report October, 2007 INMS Quarterly
INMS quarterly report: Aug.-Sept., 2005 Science highlights –In situ determination of the atmosphere of Enceladus much beyond anticipation - water 90%,
Solar System: ground-based Inner solar system Mars Outer solar system –Dynamics of planetary atmospheres –Structure, dynamics and formation outer solar.
Need for a mission to understand the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team (1) Swedish Institute.
Density trends of negative ions at Titan A. Wellbrock 1,2,3, A. J. Coates 1,3, G. H. Jones 1,3, G. R. Lewis 1,3, C. S. Arridge 1,3, D. T. Young 4, B. A.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
INMS Quarterly Report May - July, 2006 Submitted by J. Hunter Waite and the INMS Science and Operations Teams.
Saturn’s spin periodicities caused by a rotating partial ring current Krishan Khurana Institute of Geophysics and Planetary Physics, UCLA, Los Angeles,
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Satellites and interactions
Krusenberg Herrgård 12 June 2007 L Nordh/Mats André Swedish Report to ILWS.
ESTIMATION OF THE EFFICIENCY OF DIFFERENT SPACE WEATHER PROCESSES AT JUPITER’S EUROPA MOON A. Lucchetti, C. Plainaki, G. Cremonese, A. Milillo, T. Cassidy,
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
INMS quarterly report: May-July, 2005 Science highlights –In situ determination of the ionospheric composition of Titan … the hydrocarbon and nitrile complexity.
Quarterly 17/18/2007 INMS Team Third Quarter Report July, 2007 INMS Quarterly
Lunar Surface Atmosphere Spectrometer (LSAS) Objectives: The instrument LSAS is designed to study the composition and structure of the Lunar atmosphere.
1 CHARM: MAPS highlights CHARM: MAPS highlights 2010.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Space weather in the solar system Andrew Coates Mullard Space Science Laboratory University College London (UK)
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
On the role of the Ionosphere for the Atmospheric Evolution of Planets – insights from Titan J-E. Wahlund, M. Yamauchi P. Garnier, R. Modolo, M. Morooka,
Titan and Saturn reports June, TOST agenda.
Energetic Neutral Atom Imaging of
Shyama Narendranath Space Astronomy Group ISRO Satellite Centre
Highlights and open questions on Titan’s atmospheric chemistry
Enceladus Plume Simulations
Earth’s Ionosphere Lecture 13
Exploring the ionosphere of Mars
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
UVIS Titan T0, TA Analysis
Presentation transcript:

Electrons at Saturn’s moons: selected CAPS-ELS results A.J. Coates 1,2. G.H. Jones 1,2, C.S.Arridge 1,2, A. Wellbrock 1,2, G.R. Lewis 1,2, D.T. Young 3, F.J. Crary 3, J.H. Waite Jr. 3, R.E. Johnson 4, T.W. Hill 5 1. MSSL-UCL, UK 2. Centre for Planetary Sciences at UCL/Birkbeck, UK 3. SwRI, USA 4. University of Virginia, USA 5. Rice University, USA

CAPS instrument SensorMeasuresEnergy range (eV/q) Energy resolution (  E/E, %) Angle range (  ) Angle bin (  ) Ion mass spectrometer (IMS) Ion mass, energy and direction 1-50, x820x8 Ion beam spectrometer (IBS) Narrow ion beams; energy and direction 1-50, x1.41.5x1.4 Electron spectrometer (ELS) Electron energy and direction , x520x5 Three sensors + DPU, actuatorThree sensors + DPU, actuator Young et al., 2004Young et al., 2004 ELS: Coates et al., 1992, Linder et al., 1998, Lewis et al., 2008, 2010ELS: Coates et al., 1992, Linder et al., 1998, Lewis et al., 2008, 2010

Titan - Ionospheric plasma in the tail Ionospheric photoelectrons e i e T9 encounter Interval 1 – ionospheric photoelectrons at R T in tail: magnetic connection to sunlit ionosphere; plasma escape Interval 2 – ionospheric & magnetospheric plasma; light ions Role of ambipolar electric field in escape – similar to Earth’s polar wind – & lower mass from higher altitude Coates et al, GRL 2007a, PhTrRS A 2009, PSS in press 2011, Wellbrock et al in prep; Wei et al., GRL 2007 Seen on other encounters e.g. T15 (Wellbrock et al., paper in prep), T55-59 (Edberg et al., PSS 2011) Process seen at Mars, Venus; Frahm et al, 06,07, Coates et al, 2008, 2011 (PSS in press)

T75 – tail encounter (c.f. T9) e i Intermittent spectra showing photoelectron peak in tail regions 1 & 2 – plasma from dayside ionosphere MAG data consistent – Wei et al 2011

T63 – tail encounter e i Intermittent spectra showing photoelectron peak in tail regions 1 & 2 – plasma from dayside ionosphere 1 2 MAG data consistent – Wei et al 2011

6 Negative ions in Titan’s ionosphere - Unexpected! - Ram direction - Near closest approach Use ram velocity as a mass spectrometer m amu ~5.32E eV Confirmed in further low altitude encounters... T16 T17 T18 T19 Originally seen on TA in 2004… Coates et al, 2007b, GRL

7 Data from CAPS electron spectrometer (ELS) at Titan  E/E=16.7%, scanned through ram direction Always see negative ion population < 1400km Maximum mass 13,800 amu/q on this encounter (T16) Coates et al., Faraday Discussions, 2010

Heavy neutrals and positive ions: Waite et al, Science 2007, Crary et al. PSS 2009) Coates et al, GRL 2007b, PSS 2009, PhTrRSA 2009, Farad. Disc Sittler et al PSS 2009, Michael et al PSS 2011 Also Wellbrock et al talk 8 Waite et al., 2007 Aerosols (UVIS, solar occultation ) Liang et al, 2007 Titan’s ionosphere: hydrocarbon & nitrile rich Source of Titan’s haze - tholins Unexpected Negative ions: In ram direction at <1400km Heaviest (up to 13,800 amu/q) at lowest altitudes

9 First chemical model including negative ions (low mass), c.f. ELS data at 1015 km (T40) (Vuitton et al., PSS 2009) Hypothesized PAHs (Waite et al., 2007, Coates et al., 2007) & fullerenes (Sittler et al., 2010) Negative ions confirmed by RPWS-LP (Wahlund et al, 2010) Work continuing on composition (Vuitton et al), agglomeration (Lavvas et al), tholins in lab (Horst et al) – Titan meeting, St Jacut, mass analysis (Wellbrock et al) Production processes: Several considered and rates estimated Mainly dissociative electron attachment Loss processes: Several considered and rates estimated Mainly associative detachment Some photodetachment

10 E3 Negative ions in the plume Charged nanograins Jones et al., GRL, 2009 Coates et al., Icarus 2010, Faraday Discussions 2010 Unexpected discoveries from CAPS-ELS at Enceladus See also Hill et al talk, Kanani et al poster, Tokar et al 2009 GRL, Gurnett et al GRL 2011

Rhea’s O 2 and CO 2 atmosphere – from INMS and CAPS Teolis, B.D., et al., Science, 2010 In-situ neutral atmosphere measurements (INMS) Negative and positive ions picked up from atmosphere pinpoint near-surface source (CAPS) Also surface charging at Rhea (Jones et al. talk) and Hyperion (Nordheim et al MAPS meeting)

Enceladus’ auroral spot Pryor, Rymer et al., Nature 2011 Variability a monitor of emission Field aligned electrons a key observation

Ganymede and Europa: JUICE Weak, O 2 /H 2 O atmospheres Ganymede magnetic field Ionospheres present Need to measure: Upstream plasma conditions key for interaction – e.g. cold, hot electrons Photoelectrons to trace magnetic field to ionospheres Search for suspected negative ions at Europa, (e.g. Cl -, Vollwerk et al, 2001), also Ganymede 13 Johnson et al 2003 Khurana et al 1996

14 Atmosphere?Ionosphere?Magnetic fieldInteraction TitanDense, N 2 /CH 4 YesNoSubsonic EnceladusPlume, H 2 O products PlumeNoSubsonic Main ringsWeak, O 2 WeakNoSubsonic RheaWeak, O 2 and CO 2 WeakNoSubsonic GanymedeWeak, O 2, H 2 OWeakerYesSubsonic EuropaWeak, O 2, H 2 OWeakNoSubsonic

Conclusions Good electron measurements important at outer planet moons –Plasma environment –Ionisation effects –Photoelectrons – trace field connection –Surface charging –In-situ measurements of fleld aligned flux, Alfven wing structure – producing auroral spot Additional species in electron data –Negative ion measurements important also – composition, pickup ions –Charged nanograins 15