H.M. QNP Bejing1 1 Hunting  -mesic nuclei Hartmut Machner (FZ Jülich & University Duisburg-Essen) GEM collaboration Outline Why are  -mesic nuclei interesting?

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Radiopharmaceutical Production
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
H.M. MENU 2010 Williamsburg1 1  bound states in nuclei Hartmut Machner (FZ Jülich & University Duisburg-Essen) GEM collaboration Outline Why are  -mesic.
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
Kˉ- 4 He, Kˉ- 3 He interactions at low energies Vera Grishina (INR RAS, Moscow, Russia) University of Bonn, Germany August 31 – September 5, 2009.
Analyzing Powers of the Deuteron-Proton Breakup in a Wide Phase Space Region Elżbieta Stephan Institute of Physics University of Silesia Katowice, Poland.
Hypernuclear Production in proton- and pion- nucleus Collisions: A Fully Relativistic Description Radhey Shyam Saha Institute of Nuclear Physics, Kolkata,
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
The  process in nuclei and the restoration of chiral symmetry 1.Campaign of measurements of the  process in N and A 2.The CHAOS spectrometer.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Hypernuclear Production with Hadronic and Electromagnetic Probes Radhey Shyam Saha Institute of Nuclear Physics, Kolkata, India Z.Zt. Institut f. Theo.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
BREAK-UP of LIGHT NUCLEI at INTERMEDIATE ENERGIES Prof. Gabriela Martinská Faculty of Science, University P.J. Šafárik, Košice Colloquium Prof. Dr. Hartmut.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
6th Dec 2011 ISOLDE Workshop, CERN Reaction Dynamics studies with 6,7 Li and 9 Be nuclei at Pelletron, Mumbai, India Vivek Parkar University of Huelva,
Breakup reaction for polarimetry of tensor polarized deuteron beams 1 A.P. Kobushkin Bogolyubov Institute for Theoretical Physics Metrologicheskaya str.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Yury Gurchin June 2011 MEASUREMENT OF THE CROSS-SECTION IN DP-ELASTIC SCATTERING AT THE ENERGIES OF 500 AND 880 MEV AT NUCLOTRON.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Meson Assisted Baryon-Baryon Interaction Hartmut Machner Fakultät für Physik Universität Duisburg-Essen Why is this important? NN interactions  Nuclear.
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
RIKEN/Tokyo-Russia Collaboration of Polarized Deuteron Experiments CNS, Univ. of Tokyo T. Uesaka.
Monday, Oct. 16, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #11 Monday, Oct. 16, 2006 Dr. Jae Yu 1.Energy Deposition in Media Total Electron.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
The Final State Interaction in the pp  + (np) and pp  + (Λp) Reactions R. Siudak Institut für Strahlen- und Kernphysik der Universität Bonn, Bonn,
Generalized Dalitz Plot analysis of the near threshold pp → ppK + K - reaction in view of the K + K - interaction Excited QCD, Stara Lesna, 4th February.
TENSOR AND VECTOR ANALYZING POWERS OF d↑ d→pT and d↑ d→pX REACTIONS AT 270 MEV T.A.Vasiliev 1†, T.Saito 2, V.P.Ladygin 1, M.Hatano 2, A.Yu.Isupov 1, M.Janek.
Markus Büscher, HYP Strangeness COSY Proton Induced Strangeness Production on Protons and Nuclei Near Threshold Markus Büscher Forschungszentrum.
Interactions of low-energy anti-kaons with lightest nuclei Vera Grishina (INR RAS, Moscow) Moscow, September 17-20, 2009 XII International Seminar on Electromagnetic.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Gamma ray interaction with matter A) Primary interactions 1) Coherent scattering (Rayleigh scattering) 2) Incoherent scattering (Compton scattering) 3)
STATUS OF PREPARATION OF dp-ELASTIC SCATTERING STUDY AT THE EXTRACTED BEAM OF NUCLOTRON. Yu.V.Gurchin LHE JINR September 2009.
Nucleon-Nucleon collisions. Nucleon-nucleon interaction at low energy Interaction between two nucleons: basic for all of nuclear physics Traditional goal.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Isovector reorientation of deuteron in the field of heavy target nuclei The 9th Japan-China Joint Nuclear Physics Symposium (JCNP 2015) Osaka, Japan, Nov.
Weak decay of  in nuclear medium FCPPL-2015, USTC, April 8-12, 2015 Institute of High Energy Physics Qiang Zhao Institute of High Energy Physics, CAS.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Crystal Ball Collaboration Meeting, Basel, October 2006 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Bryan Moffit Hall A Collaboration Meeting Studying Short Range Correlations in Nuclei at the Repulsive Core Limit via the Triple Coincidence (e,e’pN) Reaction.
1 Alexei Larionov and National Research Center Kurchatov Institute, RU Moscow, Russia Charmonium production in antiproton-induced reactions on nuclei.
PHYS 3446 – Lecture #11 Energy Deposition in Media Particle Detection
The Strong Force: NN Interaction
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
David Mchedlishvili for the ANKE collaboration
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Search for f-N Bound State in Jefferson Lab Hall-B
Deeply Bound Mesonic States -Case of Kaon-
Investigation Few-Nucleon System Dynamics in Medium Energy Domain
Study of the 3He-η System in d-p Collisions
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
N* Program at COSY April 19, 2009 | Hans Ströher (FZ-Jülich)
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Presentation transcript:

H.M. QNP Bejing1 1 Hunting  -mesic nuclei Hartmut Machner (FZ Jülich & University Duisburg-Essen) GEM collaboration Outline Why are  -mesic nuclei interesting? Search via production experiments Search via Final State Interaction (FSI) p+d  + 3 He tensor pol. d+d 

H.M. QNP Bejing2 Model for  and  ’ meson in medium (Hirenzaki et al.) Nambu-Jona-Lasinio model with the KMT interaction: explicit breaking of Ua(1) symmetry Kobayashi, Maskawa Prog.Theor.Phys.44, 1422 (70) G. ’t Hooft, Phys.Rev.D14,3432 (76) V  (r) V  ’ (r) V  (r) 2 V  ’ (r) V  (r) g D : constant g D = 0 (w/o KMT term) g D = g D (  =0) e -(  /  0) 2 11 B

H.M. QNP Bejing3 Heuristic approach A rather large s-wave  -nucleon scattering length lead to the idea of bound  -nucleus systems. This would be a strong bound system, contrary to pionic atoms (Coulomb bound). How to observe? Recoil free transfer reactions like in hyper-nuclei and in pionic atoms cases. Nuclear projectiles: –d+A  3 He+[(A-1)  ]: Break up protons have same magnetic rigidity as 3 He’s.  Large cross section. –p+A  3 He+[(A-2)  ]: Magnetic rigidity of beam particles differ by a factor of two from 3 He’s. Small cross section. 

H.M. QNP Bejing4 Order of magnitude HHG d, 3 He L.-C. Liu

H.M. QNP Bejing5 Missing mass spectroscopy emitted particle Incident particle target meson deuteron-hole Momentum transfers for  -mesic nuclei formation

H.M. QNP Bejing6 Previous searches Pfeiffer et al. PRL:  + 3 He  0 +p+X, 3.5  Sokol et al.:  + 12 C  + +n+X; Both ejectiles are anti-correlated; =300 MeV, =100 MeV Lieb et al. (  +,p) Chrien et al. PRL q=200 MeV/c inclusive

H.M. QNP Bejing7 Reactions 3 He in BIG KARL, all beam momentum  -p back to back in ENSTAR 3-fold coincidence + 3 more constraints!

H.M. QNP Bejing8 ENSTAR Detector TOF

H.M. QNP Bejing9 ENSTAR Detector NIM A 596 (08) 31

H.M. QNP Bejing10 Mounting phase

H.M. QNP Bejing11 Proton + Aluminium target Particle identification with BK focal plane detectors (high threshold cuts light particles) Event of interest:  Two correlated particles: 5+2/3=7/8 fold coincidence  Pion leaves the detector: outer layer fires  Proton stopped in the middle layer

H.M. QNP Bejing12 Two spectrometer settings

H.M. QNP Bejing13 Time- and 3 He spectra

H.M. QNP Bejing14 η-nucleus formation cross section estimation L ≈ 5*10 35 cm -2 ≈75 hours of the beam for each setting ≈ 5 * 10 8 particles per second on the target 1 mm Aluminium target efficiency: 0.70±0.07 loss due to geometry and cuts: Bump = 50 pb ε branch = 1/3 N*  N(2T z +1) N 0* -- p2 00 n1 N +* ++ n2 00 p1

H.M. QNP Bejing15 Summed data PRC 70 (2009) (R)

H.M. QNP Bejing16 classical description in „a“ and „r 0 “ alternative description  final state interaction Tacid assumption: s-wave, and then d  /d  =  /4  Sign convention: Goldberger

H.M. QNP Bejing17 Binding conditions Quasi-bound requires: Im(a  A ) > 0 from unitarity |Im(a  A )| < |Re(a  A )| to have a pole in the negative energy half plane Re(a  A ) < 0 to have a bound state, but |FSI| 2  Re(a  A ) 2 |Q 0 (  3 He)|<|Q 0 (  4 He)| Otherwise: virtual (unphysical) state

H.M. QNP Bejing18 Total cross sections

H.M. QNP Bejing19 3 He-  production amplitude T. Mersmann et al., PRL 98 (07) COSY11 + old data <50 MeV/c no need for effective range PLB 649 (07)258

H.M. QNP Bejing20 dd  Eur. Phys. J. A 26 (2005) 421

H.M. QNP Bejing21 GEM dd  In order to extract s-wave production, tensor polarised deuteron beam Target area:

H.M. QNP Bejing22 Raw data (  +1)/2 (  -1)/2 -(  +1)/2 -(  -1)/2

H.M. QNP Bejing23 Unpolarised cross sections Exp.a0a0 a2a2 a4a4 ANKE 1.30 ± ±0.19 GEM 1.27 ± ± ±0.07 s, p and d-waves!

H.M. QNP Bejing24 Excitation Function Same momentum range as in p+d, but less data points. Cross section less than 5%! How to extract s-wave?

H.M. QNP Bejing25 Polarised beam dp elastic scattering

H.M. QNP Bejing26

H.M. QNP Bejing27 Better fit than partial wave amplitudes (s, p, 2d waves), because less parameters (4 instead of 7) Angular dependence due to s-d interference

H.M. QNP Bejing28 H. M., Mumbai, Febr Final result NP A 821 (2009) 193 PWA spin ampl.

H.M. QNP Bejing29 Final result scatt. length effective range

H.M. QNP Bejing30 Summary  Search for -mesic nuclei employing recoil free kinematics.  We see an enhancement in the spectra after detecting 3 final particles: 3 He at zero degree and  - +p back to back.  25 Mg  bound state: BE13 MeV, FWHM10 MeV  5 effect  We have measured angular distributions of cross sections and tensor analysing power for the reaction dd at 16.6 MeV above threshold  s-wave strength could be extracted  s-wave strength of other experiments (Willis et al., Wronska et al.) extracted  FSI shows Im a () = 0.0(5) fm. This indicates a small absorption because the nucleons are strongly bound  The -nucleus levels in heavy nuclei thus might be fairly narrow.

H.M. QNP Bejing31 The GEM Collaboration M. Abdel-Bary a, S. Abdel-Samad a, A. Budzanowski d, A. Chatterjee i, J. Ernst g, P. Hawranek a,c, R. Jahn e, V. Jha i, S. Kailas i, K. Kilian a, Da. Kirilov a,h, Di. Kirilov h, S. Kliczewski d, D. Kolev f, M. Kravcikova m, T. Kutsarova e, M. Lesiak a,c, J. Lieb j, H. Machner a, A. Magiera c, G. Martinska l, H. Nann k, N. Piskinov h, L. Pentchev e, D. Protic a, J. Ritman a, P. von Rossen a, B. J. Roy i, P. Shukla i, R. Siudak d, I. Sitnik h, M. Ulicny a,l, R. Tsenov f, J. Urban l, G. Vankova a,f, C. Wilkin n, G. Wüstner b a. Institut für Kernphysik, Forschungszentrum Jülich, Jülich, Germany b. Zentrallabor für Elektronik, Forschungszentrum Jülich, Jülich, Germany c. Institute of Physics, Jagellonian University, Krakow, Poland d. Institute of Nuclear Physics, Pan, Krakow, Poland e. Institute of Nuclear Physics and Nuclear Energy, Sofia, Bulgaria f. Physics Faculty, University of Sofia, Sofia, Bulgaria g. Institut für Strahlen- und Kernphysik der Universität Bonn, Bonn, Germany h. LHE, JINR, Dubna, Russia i. Nuclear Physics Division, BARC, Bombay, India j. Physics Department, George Mason University, Fairfax, Virginia, USA k. IUCF, Indiana University, Bloomington, Indiana, USA l. P. J. Safarik University, Kosice, Slovakia m. Technical University, Kosice, Kosice, Slovakia n. Department of Physics & Astronomy, UCL, London, U.K.

H.M. QNP Bejing32 Thank you for your attention

H.M. QNP Bejing33 FSI

H.M. QNP Bejing34 Excitation function:dp → 3 He  2 /n free =0.82