Present Status of feasibility study on Polarized 3 He Ion Source Yasuhiro Sakemi: 2003-October-20 Optical Pumping To Injector (AVF Cyclotron) 3 He Atoms.

Slides:



Advertisements
Similar presentations
A proposal for a polarized 3 He ++ ion source with the EBIS ionizer for RHIC. A.Zelenski, J,Alessi, E.Beebe, A.Pikin BNL M.Farkhondeh, W.Franklin, A. Kocoloski,
Advertisements

Polarized 3He ++ ion source development for RHIC. Check the Bjorken Spin Sum Rule (the difference between the 1st moments of the proton and neutron spin.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
W. Udo Schröder, 2004 Instrumentation 1. W. Udo Schröder, 2004 Instrumentation 2 Probes for Nuclear Processes To “see” an object, the wavelength of the.
A Proposal of a Polarized 3 He ++ Ion Source with Penning Ionizer for JINR N.N. Agapov, Yu.N. Filatov, V.V. Fimushkin, L.V. Kutuzova, V.A. Mikhailov, Yu.A.
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
“NUCLOTRON-M” - кеу element of NIKA A.D.Kovalenko.VHM Workshop, September 19, 2007, Dubna.
1/13 T. Inoue NEUTRAL BEAM INJECTION R&D on Ion Sources and Accelerators FT/1-2Ra: 1 MeV accelerator and uniformity R&D on a High Energy Accelerator and.
High Density Jet Polarized Target Molecular Polarization Workshop Ferrara,Italy June.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Triangle Universities Nuclear Laboratory July 26, 2001-TUNL REU The Making and Using of Spin-Polarized H  and D  Beams.
Optically Pumping Nuclear Magnetic Spin M.R.Ross, D.Morris, P.H. Bucksbaum, T. Chupp Physics Department, University of Michigan J. Taylor, N. Gershenfeld.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Carbon Injector for FFAG
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Feasibility Check / How to test EquipmentsStatusCostDateCommentsContact Polarized 3 He atomsCell for transfer design / LKB, Paris/MainzSspm.e. optical.
September 12, 2013 PSTP 2013 G. Atoian a *, V. Klenov b, J. Ritter a, D. Steski a, A. Zelenski a, V. Zubets b a Brookhaven National Laboratory, Upton,
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
New Progress of High Current Gasdynamic Ion Source
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
An attempt toward dynamic nuclear polarization for liquid 3 He 1. Motivation of the study 2 . Polarizing 3 He in dense form 3. DNP for liquid He3 3 . Doping.
Polarized 3 He Target for 12 GeV Experiments J. P. Chen, August 15, 2012, JLab  Experiments and requirements  Target performance from previous experiments.
Why plasma processing? (1) UCLA Accurate etching of fine features.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Considerations for the Optimal Polarization of 3 He Targets Brielin C. Brown University of Virginia October 10, 2008 SPIN 2008.
Plasma diagnostics using spectroscopic techniques
Components of the Rubidium Apparatus Magnet: Confines the electron beam to go through the aperture separating the source and target chambers. Probe Laser:
IR summary M. Sullivan Nov. 3, 2011 JLAB MEIC IR workshop.
Proposal to develop Polarized Nuclear Beam ( 3 He and 6 Li) Yasuhiro SAKEMI For RCNP Polarized Nuclear Beam Collaboration Contents : 1.Physics Prospects.
Energy calibration at LHC J. Wenninger. Motivation In general there is not much interest for accurate knowledge of the momentum in hadron machines. 
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
ICIS2015,Aug , 2015, New York, USA Further improvement of RIKEN 28GHz SC-ECRIS for production of highly charged U ion beam T. Nakagawa (RIKEN, Nishina.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
The propagation of a microwave in an atmospheric pressure plasma layer: 1 and 2 dimensional numerical solutions Conference on Computation Physics-2006.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
Mats Lindroos Future R&D: beta-beam Mats Lindroos.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Beam Species Measurements on the MAST NBI system Brendan Crowley Thanks to.
Indiana University Cyclotron Facility March, 2004 EIC WorkshopV.P.Derenchuk 1 Polarized Ion Sources V.Derenchuk, Ya.Derbenev, V.Dudnikov Second Electron-Ion.
1 Proposal for a CESR Damping Ring Test Facility M. Palmer & D.Rubin November 8, 2005.
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
A. Bondarevskaya Highly charged ion beam polarization and its application to the search for the parity nonconservation effects in ions
PST05, November 14-17, 2005 at Tokyo 1 Design of a polarized 6 Li 3+ ion source and its feasibility test A. Tamii Research Center for Nuclear Physics,
Neutron EDM Monte Carlo Simulation Uniform E+B fields Riccardo Schmid B. Plaster, B. Filippone Chicago June 6, 2007 EDM Collaboration Meeting.
A. Nass, M. Chapman, D. Graham, W. Haeberli,
SONA Transition Optimization in the Brookhaven OPPIS A. Kponou, A. Zelenski, S. Kokhanovski, V. Zubets & T. Lehn B. N. L.
Polarized source upgrade RSC, January 11, OPPIS LINAC Booster AGS RHIC ( ) ∙10 11 p/bunch 0.6mA x 300us→11∙10 11 polarized H - /pulse. ( )
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
Institute for Nuclear Physics Ralf Gebel – PSTP 2007 – September 2007 Facility overview Ion sources at COSY R&D details.
September 13, 2007 J. Alessi EBIS Project and EBIS as an ionizer for polarized He-3 ? Jim Alessi Work of E. Beebe, A. Pikin, A. Zelenski, A. Kponou, …
The 12th Symposium on Accelerator Physics, Yuzhong, Gansu, China1 Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT Youjin.
SPES Target Group Data…… INFN-CISAS-CNR collaboration The Ablation Ion Source for refractory metal ion beams A preliminary design.
Development of a Polarized 6Li3+ Ion Source at RCNP
Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT
JLEIC ion source: specifications, design, and R&D prospects
Investigation of laser energy absorption by ablation plasmas
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
Feasibility Study of a Polarized 6Li ion Source
Feasibility Study of the Polarized 6Li ion Source
A. Tamii Research Center for Nuclear Physics, Osaka University, Japan
Feasibility Study of the Polarized 6Li ion Source
Components of the Rubidium Apparatus
Presentation transcript:

Present Status of feasibility study on Polarized 3 He Ion Source Yasuhiro Sakemi: 2003-October-20 Optical Pumping To Injector (AVF Cyclotron) 3 He Atoms Polarized 3 He Atoms Polarized 3 He 2+ Ions ECR Ionizer 3He : 80 % polarization3He++ : ? % polarization 1. 3 He polarizer + ECR ionizer 2. 3 He + Ion Polarizer + Ionizer (alternative design)

Depolarization in ECR Ionizer Mirror Coil Sextupole magnet Plasma electron 3 He PolarizerECR Ionizer P~1 torr Hz~1 mT dHx/dx/Hz~10 -4 P~10 -5 torr Hz~0.5 T dHx/dx/Hz~ 3 He 3 He +3 He ++ 3 He +*3 He * Residence Time in ECR chamber ~ 100 ms Confinement Time in ECR plasma ~ 1 ms Ionization Process

Depolarization 1 : Depolarization due to inhomogeneous magnetic field Polarized 3He atoms : ρi Polarized 3He ++ Ions Extraction Vacuum Pump ρ0 Polarized 3He Atoms Residence Time ~ Relaxation Time Residence Time : t r ~ depend on ECR chamber size, vacuum system, pressure, conductance, flow rate … ECR chamber size : 13 φ, 42 cm, a= 1φ, L=50 cm Residence Time ~ 100 ms order, but depend on ECR chamber spec. Conductance : C1 Conductance : C2 Cell volume : V ρp F atoms/s ECR chamber

Relaxation Time in inhomogeneous magnetic field Behavior of relaxation time : T 1 ~ depend on the ratio of diffusion time :τ d and precession time : τ l 1.ECR chamber: dH x /dx ~ T/cm, H 0 ~0.5 T : field gradient ~ 20 – 30 m -1 : T 1 ~ 100 ms 2.Pumping dH x /dx ~ mT/cm, H 0 ~1 mT : field gradient ~ 0.1 m -1 : T 1 ~ 300 s 3.Mainz 3He polarizer : field gradient ~ m -1 : T 1 ~ 1 hour Relaxation time : T 1 depend on field gradient B B

ECR chamber design Depolarization due to relaxation ~ should be careful ECR design : Relaxation time : T 1 > Residence time : T r Depolarization due to relaxation can be solved by : 1.Field gradient ~ small : Mirror field, Multipole field 2.Chamber size, Conductance, Vacuum system : optimize 3.Others …

Depolarization 2 : Depolarization in the ionization process ECR Plasmaelectron J I B Hyperfine Interaction in magnetic fieldElectron Spin ResonanceDe-Ionization Process 1.Ion Confinement Time ~ enough to ionize, but should be not too long 2.Inelastic Scattering 3.Neutral Density Ion Micro Wave For Electron heating Strong Field Depolarization due to : Micro Wave PowerHigh frequency ECR Ionizer1.Adjustable Mirror Ratio B1 He ion Electron De-ionization Time High frequency region ~ depolarization due to De-ionization process ~ dominant 2.Inelastic Scattering 3.Neutral Density ~ Vacuum

Obtained Polarization 1.Polarization ~ 30 % will be achieved with Polarized 3 He gas : 50 % input 2.Ion Confinement Time : 1.5 msec input 3.Depolarization due to ionization, de- ionization effects : included 4.Depolarization due to ESR effects ~ not included for the reason described later slide 5.Others … Calculation with Tanaka-Model

Additional Information If we apply nice Mainz 3 He polarizer, High polarized 3 He gas : 80 % is obtained ! (Ion Confinement Time =1.5 msec) ESR effects ~ what should be checked: Can be neglected or should be included ? (Ion Confinement Time = 1.5 msec)

Polarization including all effects (inelastic scattering) Ionization rate (3He+ ⇒ 3He++) ~ 2.3×10 -9 cm 3 /s Inelastic scattering rate (3He+ ⇒ 3He+*) ~ 2.5×10 -8 cm 3 /s 3He gas polarization ~ 80% Inelastic scattering included 1.3He++ ~ 25% polarization 2.Depolarization due to Inelastic scattering ~ dominant 3.ESR effects ~ small effect at high frequency region 4.Others..

Conclusion at present 1.Depolarization due de-ionization process (inelastic scattering) ~ dominant process 2.Neutral density in ECR chamber ~ large effect to depolarization 3.Depolarization due to ESR effects ~ at high frequency region, other effects large 4.Relaxation time ~ Residence time : should be careful in the design of ECR ionizer 5.ECR ionizer ~ modify to dedicate for the 2 electrons stripping / Not highly charged ions 6.Mirror Ratio, Micro-Wave power adjustment 7.Expected polarization : 20 % ~ % 3He atoms polarization at present 8.Experimental depolarization study ~ necessary Further feasibility study ECR Ionizer is Good or Bad for polarized ion source ~ should be concluded soon… What should be checked further : 1.Vacuum (Neutral Density) in ECR chamber 2.De-ionization process ~ depolarization process 3.Required polarization and intensity for Physics goal

Alternative (Ideal) method of Polarized 3 He Ion Source 3 He 3 He + 3 He ++ 3 He +*3 He * Residence Time in ECR chamber ~ 100 ms Confinement Time in ECR plasma ~ 1 ms Ionization Process Depolarization due to 1.Ionization process ⇒ 3He+ polarize + 1 electron strip in ionizer 2.ESR (u-wave) ⇒ decrease the strip electron number 3.Relaxation ⇒ homogeneous magnetic field Residence Time < Relaxation Time Confinement Time ~ short 3He polarizer + ECR 3 He + 3 He ++ 3 He +* Ionization Process Homogeneous Magnetic Field Alternative (Ideal) method : 3He+ Ion polarizer + Charge breeder

Possible configuration 1.Meta-Stability Exchange 2.Spin Exchange 3.Electron Pumping 4.Others … 3 He + Ion PolarizerIonizer + 1.ECR charge breeder 2.EBIS ~ pulse beam, low intensity.. 3.Acceleration and Strip with foil etc. 4.Others …

3He + ion polarizer + ECR charge breeder Mirror Coil Sextupole magnet Plasma electron 3 He PolarizerECR charge breeder Based on the work at Rice Univ. ~ Phys. Rev. Lett. 20 (1968) 738 3He+ ion beam ~ Polarization : 5 %, Intensity : 4 uA 3 He, 3 He*, 3 He + RF discharge Similar to RF Ion Source P~1 torr Hz~1 mT dHx/dx/Hz~10 -4 P~10 -5 torr Hz~0.5 T dHx/dx/Hz~ one electron ~ strip in ECR 3 He + 3 He ++

3 He polarization with direct optical pumping 3 He* 3 He Polarized 3 He Optically pumped Polarized Meta-stable 3 He 3 He* Nuclear Spin : conserved Meta-stable orientation : transferred Polarization production process : 1.Produce meta-stable 3 He atoms with RF discharge 3 He g.s. ⇒ 3 He (2 3 S 1 ) 2.Coupling to the radiation field with optical pumping 3 He* (2 3 S 1 ) ⇔ 3 He (2 3 P 0 ) ~ atom polarization 3.Transfer of polarization to the nucleus with hyperfine coupling 4.Meta-stability exchange collisions ⇒ transfer of nuclear polarization to the ground state 3 He g.s. (1 1 S 0, m F =-1/2) + 3 He*(2 3 S 1, m’ F ) ⇔ 3 He*(2 3 S 1, m’ F -1) + 3 He g.s. (1 1 S 0, m F =1/2) 5.Others 4. Meta-stability exchange collision 23S123S1 23P23P 11S011S0 Ionization 2. Optical pumping with laser at 1083 nm 1. Meta-stable state of 8000 s, populated by RF discharge 3 He : ground state 3 He * : Meta-stable state

3He+ Ion Production in pumping cell 3He(glound state)3He*(meta-stable)3He+(ion) Density cm ? (Production rate = /s) Exchange time1 s10 -6 s 3 He, 3 He*, 3 He + 1 Torr Pumping Cell 1. Direct Ionization 2. Cumulative Ionization 3. Meta-stable collisions Meta-stable collision cross section : σ~ cm 2 : large σ ~

Polarized 3 He + Ion Production Meta-stability exchange collision σ ~ 7× cm 2 Electron transfer reaction ~ large σ ~ cm 2 m F =-3/2,-1/2m F =3/2,1/2 3S13S1 1S01S0 3 He 3 He * Laser Pumping Discharge 3 He + Ion m F =-1/2m F =1/2 τ ex ~10 -6 s T ex ~(N 3He /N 3He* )τ ex ~1 s τ ex + (g.s. ⇒ 1+) ~10 -6 s Relaxation time : T 1 ~100 s T ex + (g.s. ⇒ 1+) ~(N 3He+ /N 3He )τ ex(g.s. ⇒ 1+) ~10 -6 s τ pump ~ s Hierarchy of time constants : τ pump >τ ex + ~T ex +

Polarization of 3He+ ions 3 He*(Meta-stable) P* / n (cm -3 ) 3 He(G.S. atom) P / N (cm -3 ) 3 He + (Ion) P + / N + (cm -3 ) Tr + Tr τr Pumping Polarization of 3He+ ions (relaxation time 3He ion) should be checked experimentally PumpingDegradation of polarization Pumping term >> Degradation term ⇒ 1.T 2 /T r << 1 ~ experimentally OK 2.T 2 /T 3 >1 ⇒ relaxation time : Tr+ >> T3+ P 3He atom ~ P +

Expected Polarization of extracted 3He++ ion beam 3 He + 3 He ++ 3 He +* Ionization Process Homogeneous Magnetic Field 3He+ ion polarization ~ 80 % Simple ionization process 1.Only rough estimation !! 2.3He++ ~ 50 % polarization 3.Depolarization due to inelastic scattering ~ large contribution 4.Detailed MC study ~ necessary 5.Depolarization mechanism due to inelastic scattering 6.Others Not Final Result

What should be checked 1.Polarization of 3He+ ion in the pumping cell 2.Relaxation time of polarized 3He+ ions in the pumping cell 3.Density of 3He+ ions in the cell 4.Depolarization of 3He+ ions in ECR charge breeder 5.Beam intensity

スピン交換型偏極 3 He イオン源 断面積 > cm 2 Prof. Tanaka-san’s method

特長:1)大電流 I( 3 He + ) ~1m A 以上 2) 3 He + 核偏極度 80%以上 3 ) 6 Li + 偏極にも用いられる。 (スピン交換断面積は 3 He + より大きい? ) Prof. Tanaka-san’s method

Estimated Polarization and Intensity at present TypeSEPISECR with 3He3He+ + Charge breeder 3He+ + Ideal Ionizer (acceleration/foil) Physics 3He polarization--80 % -- 3He+ polarization80 %--80 % Should be checked 80 % Should be checked -- 3He+ Intensity1 mA--4 Univ. Should be estimated 4 Univ. Should be estimated -- 3He++ polarization20 % ~ 30 %~ 50 % (?)80 % 3He++ Intensity1~100 uA ??? Cost Construction Time

Summary Feasibility study ~ continue Monte-Carlo simulation for feasibility study and design work Design of 3He polarizer + dedicated Ionizer Experimental feasibility check : Unknown number 1.Confinement Time in ECR : 6Li development ~ RIKEN experiment ~ Depolarization due to ECR ionizer : detailed plan ~ until next meeting ~ Ionization efficiency ~μwave power : RCNP ~ 2003/ ESR effects ~ μ wave power : ~ 2003/ Polarization of 3He+ ions : discussion with ENS/Mainz group Feedback everything into LOI/TDR Schedule 1.P-PAC on Nov-10 ~ Polarized 6Li ion source, depolarization study of 3He – 2004~ feasibility check, design work 3.P-PAC in 2004 ~ LOI, judgment which method is best for polarized 3He ion source 4.Budget in 2004 ~ 科研費等、外部資金 5.Construction ~ start in 2004 or 2005 if P-PAC, budget ~ approved 6.Time line ~ 2006

Experimental Feasibility Check What should be checked experimentally and with simulation (if possible) 1.Depolarization in the ionizer : inject polarized 3He gas supplied by (1) Polarized Target at RCNP or (2) LKB, Paris 2.Ionization efficiency : inject 4He gas / detect 2+ ions 3.Detailed study of ionization mechanism ECR ionizer : Ionization ~ complicated multi-step Polarized 3 He atoms ( Polarization: P i, Intensity: I i )( Polarization: P f, Intensity: I f ) Polarized 3 He 2+ ionPolarimeter NMR Feasibility check experiment Theoretical / Simulation evaluation Delivered from Mainz to Sheffield in magnetized spin box -Housing a glass vessel -Relaxation time ~ 50 hours (reproducibly ?)

Present Status of Polarized Nuclear Beam 1.Polarized 3He ion source ~ feasibility study : still continued, in progress (1)Independent feasibility study (Sakemi / Prof. Tanaka) (2)Prof. Tanaka ~ publication NIM ~ discuss the difficulty of this method (3)Still no consensus in the collaboration (4)Nice idea for high polarization ~ needed !~ alternative method 2.Polarized 6Li ion source (Dr.Tamii) ~ feasibility check : in progress / almost completed (1)Detailed study ~ reported in the previous meeting, 6Li polarization ~ 70~80 % (2)Physics ~ workshop on 0- states in Aug. (3)LOI writing ~ in progress / PPAC on 10-Nov / Budget (4)Construction in part ~ will be started after the discussion at P-PAC 3.Others