Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Spinor condensates beyond mean-field
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA Motivated by experiments of G.-B. Jo et al., Science (2009) Harvard-MIT David.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Michiel Snoek September 21, 2011 FINESS 2011 Heidelberg Rigorous mean-field dynamics of lattice bosons: Quenches from the Mott insulator Quenches from.
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Qiang Gu Ferromagnetism in Bose Systems Department of Physics
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Spectroscopy of ultracold bosons by periodic lattice modulations
Chromium Dipoles in Optical Lattices
Presentation transcript:

Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne Crubellier (Laboratoire Aimé Cotton), J. Huckans, M. Gajda A. de Paz (PhD), A. Sharma, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) Dipolar chromium BECs, and magnetism

(magnetic) dipole-dipole interactions Anisotropic Long range Chromium : an artificially large spin (S=3): R Van-der-Waals (contact) interactions Short range Isotropic

Relative strength of dipole-dipole and Van-der-Waals interactions Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007)) Spherical BEC collapses Cr: R BEC stable despite attractive part of dipole-dipole interactions Small (but interesting) effects observed – at the % level : - Striction – Stuttgart, PRL 95, (2005) - Collective excitations - Villetaneuse, PRL 105, (2010) - Anisotropic speed of sound, Villetaneuse, PRL 109, (2012) Stuttgart: d-wave collapse, PRL 101, (2008) See also Er PRL, 108, (2012) See also Dy, PRL, 107, (2012) and Dy Fermi sea PRL, 108, (2012) … and heteronuclear molecules…

Polarized (« scalar ») BEC Hydrodynamics Collective excitations, sound, superfluidity Anisotropic Long-ranged R Hydrodynamics: non-local mean-field Magnetism: Atoms are magnets Chromium (S=3): involve dipole-dipole interactions Multicomponent (« spinor ») BEC Magnetism Phases, spin textures… Interactions couple spin and orbital degrees of freedom

Key idea: Study magnetism with large spins (S=3, S=6…) This talk: 0 Introduction to spinor physics 1 Spinor physics of a Bose gas with free magnetization 2 (Quantum) magnetism in opical lattices

Exchange energy Coherent spin oscillation Chapman, Sengstock… Quantum effects! Klempt Stamper-Kurn Domains, spin textures, spin waves, topological states Stamper-Kurn, Chapman, Sengstock, Shin… Quantum phase transitions Stamper-Kurn, Lett, Gerbier Introduction to spinor physics

Main ingredients for spinor physics Spin-dependent contact interactions Spin exchange Quadratic Zeeman effect S=1,2,… Main new features with Cr S=3 7 Zeeman states 4 scattering lengths New structures Purely linear Zeeman effect Strong spin-dependent contact interactions And Dipole-dipole interactions 0 1

Dipolar interactions introduce magnetization-changing collisions Dipole-dipole interactions R without with

Important to control magnetic field Rotate the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Angular momentum conservation Dipolar relaxation, rotation, and magnetic field Ueda, PRL 96, (2006) Santos PRL 96, (2006) Gajda, PRL 99, (2007) B. Sun and L. You, PRL 99, (2007)

B=1G  Particle leaves the trap B=10 mG  Energy gain matches band excitation in a lattice B=.1 mG  Energy gain equals to chemical potential in BEC

S=3 Spinor physics with free magnetization Technical challenges : Good control of magnetic field needed (down to 100  G) Active feedback with fluxgate sensors Low atom number – atoms in 7 Zeeman states 1 Spinor physics of a Bose gas with free magnetization 2 (Quantum) magnetism in opical lattices

Spin temperature equilibriates with mechanical degrees of freedom We measure spin-temperature by fitting the m S population (separated by Stern-Gerlach technique) At low magnetic field: spin thermally activated Related to Demagnetization Cooling expts, Pfau, Nature Physics 2, 765 (2006)

Spontaneous magnetization due to BEC BEC only in m S =-3 (lowest energy state) Cloud spontaneously polarizes ! Thermal population in Zeeman excited states A non-interacting BEC is ferromagnetic New magnetism, differs from solid-state PRL 108, (2012) T>Tc T<Tc a bi-modal spin distribution

Below a critical magnetic field: the BEC ceases to be ferromagnetic ! -Magnetization remains small even when the condensate fraction approaches 1 !! Observation of a depolarized condensate !! Necessarily an interaction effect B=100 µG B=900 µG PRL 108, (2012)

Santos PRL 96, (2006) Large magnetic field : ferromagneticLow magnetic field : polar/cyclic Ho PRL. 96, (2006) Cr spinor properties at low field PRL 106, (2011) Good agreement between field below which we see demagnetization and Bc

Open questions about equilibrium state Santos and Pfau PRL 96, (2006) Diener and Ho PRL. 96, (2006) Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions - Operate near B=0. Investigate absolute many-body ground-state -We do not (cannot ?) reach those new ground state phases -Quench should induce vortices… -Role of thermal excitations ? !! Depolarized BEC likely in metastable state !! Demler et al., PRL 97, (2006) Polar Cyclic Magnetic field

Magnetic phase diagram Measure T c (B) and M(T c,B) for different magnetic fields B Get T c (M) Quasi- Boltzmann distribution Bi-modal spin distribution Phase diagram adapted from J. Phys. Soc. Jpn, 69, 12, 3864 (2000) See also PRA, 59, 1528 (1999)

0 Introduction to spinor physics 1 Spinor physics of a Bose gas with free magnetization 2 (Quantum) magnetism in opical lattices

Load optical lattice

Study quantum magnetism with dipolar gases ? Dipole-dipole interactions between real spins Hubard model at half filling, Heisenberg model of magnetism (effective spin model) Magnetization changing collisions

Magnetization dynamics resonance for a Mott state with two atoms per site (~15 mG) Dipolar resonance when released energy matches band excitation Mott state locally coupled to excited band Produce BEC m=-3 detect m=-3 Rf sweep 1Rf sweep 2 m=+3, wait time Load optical lattice

Direct manifestation of anisotropic interactions : Strong anisotropy of dipolar resonances Anisotropic lattice sites See also PRL 106, (2011) At resonance May produce vortices in each lattice site (Einstein-de-Haas effect) (problem of tunneling)

Magnetization changing collisions Can be suppressed in optical lattices Differs from Heisenberg magnetism: From now on : stay away from dipolar magnetization dynamics resonances, Spin dynamics at constant magnetization (<15mG) Related research with polar molecules: A. Micheli et al., Nature Phys. 2, 341 (2006). A.V. Gorshkov et al., PRL, 107, (2011), See also D. Peter et al., PRL. 109, (2012)

Other differences from Heisenberg magnetism: -Bosons… -Not a spin ½ system: S=3 -Anisotropy --1/r 3 dependence -Does not rely on Mott physics - Can have more than one atom per site Effective S t =

Control the initial state by a tensor light-shift A  polarized laser Close to a J  J transition (100 mW nm)  m S 2 Quadratic effect allows state preparation

Adiabatic state preparation in 3D lattice t quadratic effect Initiate spin dynamics by removing quadratic effect (2 atomes / site) vary time Load optical lattice quadratic effect

 Short times : fast oscillations due to spin-dependent contact interactions (  250 µs) (period  220 µs) Up to now unknown source of damping (sudden melting of Mott insulator ?) PRELIMINARY

Long time-scale spin dynamics in lattice : intersite dipolar exchange Sign for intersite dipolar interaction (two orders of magnitude slower than on-site dynamics) Magnetization is constant PRELIMINARY

Oscillations arise from interactions between doubled- occupied sites Effect of doublons ? Very slow spin dynamics for one particle per site: Intersite dipole-dipole coupling PRELIMINARY

Our current understanding: Spin oscillations due to inter-site dipolar exchange between doublons (Very) long time-scale dynamics due to inter-site dipolar exchange between singlons Exact diagonalization 2 pairs, 2 sites Faster coupling because larger effecive spin Timescale = 4 ms 1/e timescale = 25 ms Theoretical estimate : 2 atoms, 2 sites : exchange timescale = 50 ms

Bulk Magnetism: spinor physics with free magnetization New spinor phases at extremely low magnetic fields Conclusions Lattice Magnetism: Magnetization dynamics is resonant Intersite dipolar spin-exchange

A.de Paz, A. Chotia, A. Sharma B. Pasquiou, G. Bismut, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix Aurélie De Paz Amodsen Chotia Arijit Sharma