Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Dipolar interactions and magnetoroton softening in spinor condensates Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Vladimir Gritsev.
Guillermina Ramirez San Juan
Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Spectroscopy of ultracold bosons by periodic lattice modulations
Chromium Dipoles in Optical Lattices
Presentation transcript:

Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students and post-docs: T. Zanon, R. Chicireanu, A. Pouderous Former members of the group: J. C. Keller, R. Barbé B. Pasquiou O. Gorceix P. Pedri B. Laburthe L. Vernac E. Maréchal G. Bismut Q. Beaufils A. Crubellier (LAC)

Dipole-dipole interactions -Intersites effects in optical lattices Inguscio (Bloch oscillations) -Use for quantum computing Polar molecules, de Mille Blockade and entanglement of Rydberg atoms (Browaeys) -Checkerboard phases (Lewenstein) (Resembles ionic Wigner cristals) Non local meanfield Non local correlations -Strong correlations in 1D and 2D dipolar systems (Astrakharchik) Chromium : S=3 Long range interactions - 2-body physics (thermalization of polarized fermions) -Static and dynamic properties of BECs Stuttgart, Villetaneuse

Inelastic dipolar effects - Feshbach resonances due to dipole-dipole interactions (Stuttgart, Villetaneuse) Anisotropic dipole-dipole interactions Spin degree of freedom coupled to orbital degree of freedom - Dipolar relaxation (Stuttgart, Villetaneuse) - Spinor physics; spin dynamics (Stamper-Kurn)

How to make a Chromium BEC in 14s and one slide ? 425 nm 427 nm 650 nm 7S37S3 5 S,D 7P37P3 7P47P4  An atom: 52 Cr N = T=120 μK (1) (2) Z  An oven  A small MOT  A dipole trap  A crossed dipole trap  All optical evaporation  A BEC (Rb=10 9 or 10 ) (Rb=780 nm) Oven at 1350 °C (Rb 150 °C)  A Zeeman slower

Similar results in Stuttgart PRL 95, (2005) Modification of BEC expansion due to dipole-dipole interactions TF profile Eberlein, PRL 92, (2004) Striction of BEC (non local effect) Parabolic ansatz is still a good ansatz Full symbols : experiment Empty squares : numerical

Collective excitations in dipolar BECs (parametric excitation) « Quadrupole » (intermediate) « Quadrupole » (lower) « Monopole » Smaller effect (4%), but (possibly) better spectroscopic accuracy Ongoing experiment …

When dipolar mean field beats local contact meanfield (i.e. e dd >1), implosion of (spherical) condensates Stuttgart: d-wave collapse Pfau, PRL 101, (2008) Anisotropic explosion pattern reveals dipolar coupling. (Breakdown of self similarity) And…, Tc, solitons, vortices, Mott physics, 1D or 2D physics, breakdown of integrability in 1D… (Tune contact interactions using Feshbach resonances (i.e. e dd >1) Nature. 448, 672 (2007) >

Other fascinating phenomena when dipolar mean field beats magnetic field Ueda, PRL 96, (2006) Similar theoretical results by Santos and Pfau. Some differences and open questions Meanfield picture : Spin(or) precession (Majorana flips) Spin degree of freedom released, with creation of orbital momentum (vortices) Analog of the Einstein –de Haas effect Dipole inelastic interactions modify the (already rich) S=3 spinor physics, and, most noticeably, its dynamics Santos and Pfau PRL 96, (2006) At the heart of the Einstein-de Haas effect with Cr BECs : dipolar relaxation

What is dipolar relaxation ? - Only two channels for dipolar relaxation in m=3: Rotate the BEC ? (Einstein-de-Haas) rotation ! Need of an extremely good control of B close to 0

Dipolar relaxation in a Cr BEC Fit of decay gives  Produce BEC m=-3 detect BEC m=-3 Rf sweep 1Rf sweep 2 BEC m=+3, vary time See also Shlyapnikov PRL 73, 3247 (1994) Never observed up to now Remains a BEC for ~30 ms Born approximation Pfau, Appl. Phys. B, 77, 765 (2003)

Interpretation Zero coupling Determination of scattering lengths S=6 and S=4 Gap ~

New estimates of Cr scattering lengths Collaboration Anne Crubellier (LAC, IFRAF)

- The 2-body loss parameter is always twice smaller in the BEC than in thermal gases - Effect of thermal (HBT-like) correlations DR in a BEC accounted for by a purely s-wave theory. No surprise, as the pair wave-function in a BEC is purely l=0 What about DR in thermal gases ? Dipole-dipole interactions are long-range: all partial waves may contribute The dip in DR is as strong for thermal gases and BECs Partial waves l>0 do not contribute to dipolar relaxation

Perspectives : - no DR in fermionic dipolar mixtures - use DR as a non-local probe for correlations Red : l=0 Blue: l=2 Green : l=4 Magenta: l=6 Overlap calculations Anne Crubellier (LAC, IFRAF) All partial waves contribute to elastic dipolar collisions … but … For large enough magnetic fields, only s-wave contributes to dipolar relaxation (because the input and output wave functions always oscillate at very different spatial frequencies) Overlap Magnetic field

Towards Einstein-de-Haas ? (i) Go to very tightly confined geometries (BEC in 2D or 3D optical lattices) (ii) Modify output energy (rf fields) Energy to nucleate a « mini-vortex » in a lattice site Ideas to ease the magnetic field control requirements Create a gap in the system: B now needs to be controlled around a finite non-zero value (~300 kHz) Below E v no dipolar relaxation allowed. Resonant dipolar relaxation at E v.

(i) Reduction of dipolar relaxation in reduced dimension (2D gaz) Load the BEC in a 1D Lattice (retro-reflected Verdi laser) Produce BEC m=-3 detect m=-3 Rf sweep 1Rf sweep 2 BEC m=+3, vary time Load optical lattice Lose BEC (2D thermal gas) Band mapping Dipolar relaxation in reduced dimension (2D) 1st BZ

Strong reduction of dipolar relaxation when !!! !!! but instead Prospect : go to 2D or 3D optical lattices

(ii) Controlling the output energy in dipolar relaxation: rf-assisted dipolar relaxation Within first order Born approximation: (B rf parallel to B) Calculation by Paolo Pedri (IFRAF post-doc, now joined our group) Coll. Anne Crubellier (LAC) See also Verhaar, PRA (1996) Never observed Similar mechanism than dipolar relaxation Gap ~ Without rf, no DR in m=-3

Dipolar relaxation between dressed states, to control: Coupling: Output energy Prospect: operate at to observe resonant DR

Conclusion Rapid and simplified production of (slightly dipolar) Cr BECs (BECs in strong rf fields)Collective excitations (rf association) (d-wave Feshbach resonance) dipolar relaxation rf-assisted relaxation dipolar relaxation in reduced dimensions (MOT of 53 Cr) Optical lattice and low-D physics (breakdown of integrability in 1D) DR as a probe for correlations Einstein-de-Haas effect Spinor diagram Production of a (slightly) dipolar Fermi sea Load into optical lattices – superfluidity ? Perspectives

Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou O. Gorceix Q. Beaufils Paolo PedriB. Laburthe L. Vernac J. C. Keller E. Maréchal G. Bismut

Why Bessel functions ? (Floquet analysis) Modulate the eigenenergy of an eigenstate: e.g. different Zeeman states Pillet PRA, 36, 1132 (1987) Phase modulation -> Bessel functions Arimondo PRL (2007)) Q. Beaufils et al., arXiv: arXiv: rf association Rydberg in  -waves Shaken lattice