T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Creating new states of matter:
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Determination of fundamental constants using laser cooled molecular ions.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Matter-wave droplets in a dipolar Bose-Einstein condensate
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Chromium Dipoles in Optical Lattices
Presentation transcript:

T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi – June 6th 2007 Strong dipolar effects in a Chromium BEC A quantum ferrofluid

Interacting quantum systems in AMO physics Long range Isotropic Short range Isotropic Coulomb interactionDipole-dipole interactionContact interaction MITInnsbruck Long range - Anisotropic

New physics in dipolar quantum gases Dipole-dipole interactions are: - anisotropic - instability - modified dispersion relation (roton) - new equilibrium shapes (biconcave BEC) - long range - new quantum phases in optical lattices - supersolid phase pancake

Chromium How to get a Chromium BEC? Dipolar expansion Demagnetization cooling Strong dipolar effects in a Cr BEC Outlook Outline – BEC with MDDI

I. Chromium Yb Ground state 7 S 3 Magnetic dipole moment  = 6  B.

Way to BEC Continously loaded Ioffe Pritchard trap (CLIP-trap) J. Stuhler et al. PRA 64, (2001); P. O. Schmidt et al. J. Opt. B 5, S170 (2003) Doppler cooling in compressed IP-trap P. O. Schmidt, et al., J. Opt. Soc. Am. B 20, 5 (2003) >10 8 atoms in the ground state phase space density ~10 -7 Rf-evaporation Stop by dipolar relaxation! No cold & dense cloud (no BEC) in MT! S. Hensler et al., Appl. Phys. B 77, 765 (2003) +E+E+2  E m = 3 m = 2 m = 1

Transfer to optical dipole trap Advantages: all magnetic substates are trapped (no dip. relaxation) operation at arbitrary magnetic offset field (Feshbach resonance) optical pumping in m j =-3  m j = -3 m j = + 3 7S37S3 7P37P3

Forced evaporation in ODT BEC with up to atoms horizontal beam vertical beam

Dipolar expansion of a BEC Elongation along magnetization direction! Density Mean-field potential due to MDDI PRL 95, (2005). PRA 74, (2006). First Observation of mechanical effect of a homogenous magnetic field on a gas

II. Demagnetization cooling Why another cooling scheme ????? ► doppler cooling techniques limited by reabsorption ► evaporative cooling throw away 99 % of your atoms ► demagnetization cooling Kastler, Journal de physique et le radium 11, 255 (1950). Cirac, Lewenstein, Phys Rey A 52, 6 (1995).

basic idea 1. Initialization 3. Optical pumping 2. Lowering B-field Needed: 1.Suitable level scheme 2.Strong enough coupling  m j = -3 m j = + 3 7S37S3 7P37P3 -E-E m = -1 m = -2 m = -3

T 0 ? Solid vs.gas decrease of B-field solid kBkB spins phonons gas kBkB kBkB kBkB kBkB kBkB kBkB kBkB spins phonons But we can pump back !

Results: Single step M. Fattori et.al. Nature Physics 2, 765 (2006) 1G 50mG

Experimental challenges bad polarization due to (a) badly polarized light (b) transverse magnetic fields  (a) polarization quality 1/1000 (b) transverse fields below 5mG

Results: Optimized ramps

Atoms with large magnetic dipole moment . Chromium: 6  B. Small  dd … but a tunable BEC !!! III. Strong dipolar effects in a BEC Strength of the dipole-dipole interaction: Heteronuclear molecules (electric dipole moment d ) Large d (~1 Debye): No BEC yet Griesmaier et.al. PRL 97, (2006) Griesmaier et.al. PRL 94, (2005)

Tuning a with a Feshbach resonance scattering length a can be tuned with B-field ! V(R) collision with molecular potential V(R): EcEc  a ! describes low T V’(R) V’(R) with M s’ ≠ M s + B-field Vc  a is modified ! + coupling:

[J. Werner et al., PRL 94, , (2005)] Broadest resonance at G (  = 1.7 G) Field stability better than required! Tuning a with a Feshbach resonance

Tuning the scattering length Without MDDI: measure a through the released energy a ~ R 5 / N Correct for the MDDI effects (hydrodynamic theory, TF regime).

Aspect ratio vs. B Dipole-dipole interactions: elongation along a / a bg z y

Aspect ratio vs.  dd Theory without any adjustable parameter !!!

Dipolar expansion with tunable ε dd ε dd =0.16 „ε dd =0“ ε dd =0.75 ε dd =0.5 ε dd =0.16 „ε dd =0“ Stuhler et.al. PRL 95, (2005)Lahaye et.al. Nature in press

1 / e lifetime of the condensate: Limits: inelastic losses Use of a Feshbach resonance

Summary and Outlook I. Dipole-dipole interaction & ultracold Cr atoms II. Demagnetization cooling III. New regime of strong dipolar interactions  New physics 1D lattice: A stack of pancakes

Thanks for your attention! T. Lahaye B. Fröhlich M. Fattori T. Koch T. Pfau A. Griesmaier J. Metz Theory: S. Giovanazzi SFB/TR 21SPP1116 The Cr team:

Summary and Outlook One-dimensional optical lattice: a stack of pancake traps. Ø stabilize the BEC with respect to dipolar collapse? Ø study spectrum of excitations? Ø (more) stable molecules? By tuning a we enter a new regime Ø stabilize the BEC with respect to dipolar collapse? Ø study spectrum of excitations? Ø (more) stable molecules?

Chromium BEC i.Continuous loading of a Ioffe-Pritchard trap. ii.RF evaporation. iii.Transfer to crossed ODT ( nm), optical pumping, and forced evaporation. iv.10 5 atoms in BEC! A. Griesmaier et al., PRL 94, (2005). PRL 95, (2005). PRA 74, (2006). Magnetic dipole-dipole interactions: Cloud more elongated along magnetic field

Use of a Feshbach resonance One can tune the scattering length with an external magnetic field: Feshbach resonances in Chromium [J. Werner et al., PRL 94, , (2005)] Broadest resonance at G (  = 1.7 G) Field stability better than required!

Modified experimental setup Offset coils Crossed ODT z y x - Uniform field ~ 600 G - offset (400 A) + pinch (15 A) - curvature compensation - actively stabilized at level - Absorption imaging in high field - Experimental sequence: Pinch coils time Magnetic field P horiz. beam B evap 5 ms Forced evap. BEC Shape trap (50 ms) B0B0 Ramp to B (5 ms) 5 ms tof Hold (2 ms)

Tuning the scattering length Without MDDI: measure a through the released energy a ~ R 5 / N Correct for the MDDI effects (hydrodynamic theory, TF regime) B-B 0 [G]

title