New Perspectives on van der Waals – London Dispersion Interactions of Materials: Wetting, Graded Interfaces and Carbon Nanotubes R. H. French1,2, R.

Slides:



Advertisements
Similar presentations
ILCC Edinburgh, July 2002 VAN DER WAALS INTERACTION AND STABILITY OF MULTILAYERED LIQUID-CRYSTALLINE SYSTEMS dr. Andreja [ arlah Univerza v Ljubljani.
Advertisements

Outline Index of Refraction Introduction Classical Model
Chapter 1 Electromagnetic Fields
1 Physical Chemistry III Molecular Interactions Piti Treesukol Chemistry Department Faculty of Liberal Arts and Science Kasetsart University :
Lecture 14: Special interactions. What did we cover in the last lecture? Restricted motion of molecules near a surface results in a repulsive force which.
Lecture 9: Surface Energy, Surface tension and Adhesion energy
An ab-initio Study of the Growth and the Field Emission of CNTs : Nitrogen Effect Hyo-Shin Ahn §, Tae-Young Kim §, Seungwu Han †, Doh-Yeon Kim § and Kwang-Ryeol.
Physical Pharmacy 2 Electrokinetic properties of colloid: Electrical Double Layer Kausar Ahmad Kulliyyah of Pharmacy Physical Pharmacy 2 KBA.
Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM Invited Correlation-induced spectral (and other) changes Daniel F. V. James, Los Alamos.
Surface Chemistry Title The Molecular/Atomic Interactions
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Resonances and optical constants of dielectrics: basic light-matter interaction.
Intermolecular Forces. Intermolecular forces are weak, short-range attractive forces between atoms or molecules. Intermolecular forces ultimately derive.
Intermolecular Forces. Intermolecular forces are weak, short-range attractive forces between atoms or molecules. Intermolecular forces ultimately derive.
Screening of Water Dipoles inside Finite-Length Carbon Nanotubes Yan Li, Deyu Lu,Slava Rotkin Klaus Schulten and Umberto Ravaioli Beckman Institute, UIUC.
FIRST PRINCIPLES CALCULATION OF OFF-NORMAL LEEM REFLECTIVITY SPECTRA OF FEW LAYER GRAPHENE APS March Meeting: March 3, 2014 John McClain, Ph.D. Candidate.
RAMAN SPECTROSCOPY Scattering mechanisms
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
CNT – Characteristics and Applications
Surfaces of Biomaterials
Chemical Bonding of Carbon Nanotubes
Lecture 3 INFRARED SPECTROMETRY
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Optical Mineralogy Technique utilizing interaction of polarized light with minerals Uses a polarizing microscope Oils - Grain mounts Thin sections – rocks.
Contact Angles in the Study of Adhesion
INAC The NASA Institute for Nanoelectronics and Computing Purdue University Circuit Modeling of Carbon Nanotubes and Their Performance Estimation in VLSI.
Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the.
OPTICAL MINERALOGY Dr. AZZA RAGAB.
Vibrational and Rotational Spectroscopy
1 Physical Chemistry III Molecular Interactions Piti Treesukol Chemistry Department Faculty of Liberal Arts and Science Kasetsart University :
Excitons in Single Wall Dr. Fazeli and Dr. Mozaffari
LOGO What a rule surfactants play in synthesis CNTs array Shuchen Zhang, Yanhe Zhang
Nanotubes In The Name Of Allah excitons in single – walled carbon nanotubes nasim moradi graduate student of atomic and molEcular physics.
AS Chemistry – Atomic structure and bonding. Sub-atomic particles Protons – mass 1; charge +1 Electrons – mass 1 / 1840 ; charge –1 Neutrons – mass 1;
Univ. of Pennsylvania, Materials Science, 2005 R. H. Frenchhttp:// September 19, 2015 VuGraph 1 Local Optical Properties,
CH 15 HW: CH 15: 1,5,13-17 SUGGESTED: 4, 9, 11 Liquids, Solids, and Van der waals (Intermolecular) Forces.
EELS analysis of carbon structures Nanotube seminar Gergely Kovách MTA MFA.
Submitted by Roger French Affiliation Case Western Reserve Manipulating Long Range Interactions in Mesoscale Systems Opportunity (WHY?) Impact (SO WHAT?)
Atomic Structural Response to External Strain for AGNRs Wenfu Liao & Guanghui Zhou KITPC Program—Molecular Junctions Supported by NSFC under Grant No.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Classical electrodynamics.
DMPC on mica Phospholipid monolayer water subphase Gleiche et al., Nature 2000, 403, DPPC on mica Transfer direction Chen et.al., JPCB, 110 (2006)
Johnson Space Center May 18, Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)
Ressonància magnètica: ESR, RMN ESR o EPR: Ressonància de Spin Electrònic, o Ressonància Paramagnètica Electrònica RMN: Ressonància Magnètica Nuclear.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
OPTICS Chapter 35 Reflection and Refraction. Geometrical Optics Optics is the study of the behavior of light (not necessarily visible light). This behavior.
Rotational spectra of molecules in small Helium clusters: Probing superfluidity in finite systems F. Paesani and K.B. Whaley Department of Chemistry and.
NANO 225 Intro to Nano/Microfabrication
The design of dielectric environment for ultra long lifetime of graphene plasmon Dr. Qing Dai 22/10/2015.
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
Theoretical Solid State Physics Marvin L. Cohen and Steven G. Louie, University of California at Berkeley, DMR Carbon nanotubes possess novel properties.
--Experimental determinations of radial distribution functions --Potential of Mean Force 1.
Chiral Separation:  Surfactant A: DOC; Surfactant B: SDS  Results: rainbow separation Methods & Results CNTs + Surfactant A CNT Supernatant (50%) % iodixanol.
Chemical Bonding and Lewis Structures. Chemical Bonding Chemical Bonds are the forces that hold atoms together. Atoms form bonds in order to attain a.
Superconductivity and Superfluidity Temperature scales Lecture 14.
Saturable absorption and optical limiting
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Shaping Carbon Nanotube Forests for Field Emission Ben Pound and T.-C. Shen Department of Physics Background Elastocapillary Self-Assembly Method to Make.
Updates on all things van der Waals - London Dispersion for Single and Multiwall Carbon Nanotubes. Rick Rajter - MIT.
Carbon Nanotube with Square Cross-section: An Ab Initio Investigation
Materials Science at a Glance
A. Jagota. , M. Zheng#, Y-M. Chiang+, S. V. Rotkin. , C. Kiely
2 Classical propagation 2.2 The dipole oscillator model 2.3 Dispersion
Graphene doping with single atoms – a theoretical survey of energy surface  Elad Segev and Amir Natan* Department of Physical Electronics , Electrical.
Understanding the observation of large electrical conductivity in liquid crystal-carbon nanotube composites S. Krishna Prasad and V. Jayalakshmi Centre.
Intermolecular Forces
Carbon Nanotube Diode Design
Kristen E. Norman, Hugh Nymeyer  Biophysical Journal 
by Alberto Ambrosetti, Nicola Ferri, Robert A
Presentation transcript:

New Perspectives on van der Waals – London Dispersion Interactions of Materials: Wetting, Graded Interfaces and Carbon Nanotubes R. H. French1,2, R. Rajter3 1. DuPont Company, Central Research & Development, Wilmington, DE U.S.A. 2. University of Pennsylvania, Materials Science Department, Philadelphia, PA, U.S.A. 3. Mass. Inst. Of Tech., Materials Science Department, Cambridge, MA, USA http://www.lrsm.upenn.edu/~frenchrh/index.htm

Acknowledgements Spectroscopy Polystyrene SiO2: Amorphous & Quartz G. L. Tan (UPenn) M. K. Yang (DuPont) M. F. Lemon (DuPont) D. J. Jones (DuPont) Polystyrene K. I. Winey (UPenn) W. Qiu (DuPont) SiO2: Amorphous & Quartz SrTiO3 K. van Benthem (ORNL) M. Ruhle (MPI-Stuttgart) C. Elsasser (MPI-Stuttgart) Manfred Rühle (MPI-Stuttgart) Carbon Nanotubes R. Rajter (MIT) W. C. Carter (MIT) Y. M. Chiang (MIT) W. Y. Ching (Univ. Missouri–Kansas City) L. K. Denoyer (Deconvolution.com) V. A. Parsegian (NIH) R. Podgornik (Slovenia)

Dispersion Contribution to Surface Free Energy Diiodomethane Non-polar Polystyrene London Dispersion Energy Thermodynamic Free Energy Arising From London Dispersion Interaction Dispersive Component Of Surface Free Energy Electrodynamic & Polar Interactions Water Partially Polar Polystyrene R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007).

vdW-Ld Interactions: Outline Optically Isotropic, Plane Parallel Morphology Polystyrene SrTiO3: 5 And 13 Grain Boundaries Optically Anisotropic, Plane Parallel Morphology [6,5,s] and [9,3,m] Carbon Nanotubes: Plates Of Close Packed CNTs Optically And Morphologically Anisotropic [6,5,s] and [9,3,m] Carbon Nanotubes Cylinder – Cylinder Interactions Cylinder – Substrate Interactions Conclusions

Optically Isotropic Plane Parallel Morphology Hamaker Constants and Coefficients London Dispersion Energies With Effects Of Retardation Arbitrary Numbers Of Layers (Add-A-Layer)

Origin of The vdW-London Dispersion Interaction London Dispersion Interactions Of the Van der Waals Interaction Thermodynamic Free Energy Arises From Oscillating Dipoles Interatomic Bonds of Elect. Struc. Jcv => London Disp. Spectra A - Hamaker Constant Interaction Scaling Constant Fdisp - Dispersion Force Attractive Force: Nonwetting Positive Hamaker Constant Repulsive Force: Wetting Negative Hamaker Constant zJ = zeptoJoule = 10-21 Joules A123 71 zJ PS Disp. Force Air Mat. 1. Mat. 2. s p Water Disp. Force PS 8 zJ Water Air PS -16 zJ

VUV Reflectance and Interband Transitions Linear Response Function Obeys Kramers Kronig Dispersion Interband Transition Strength Complex Optical Property Related To Dielectric Function  Im[Jcv] (eV2) Re[Jcv] (eV2) M. L. Bortz, R. H. French, Appl. Phys. Lett., 55, 19, 1955-7, Nov. 8, (1989). R. H. French, Phys. Scripta, 41, 4, 404-8, (1990). M. L. Bortz, R. H. French, , Appl. Spect., 43, 8, 1498-1501, (1989).

Electronic Structure Of Polystyrene Hierarchy Of Interband Transitions Aromatic p→ p* Nonbonding: n→ s* Saturated: s→ s* R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007).

London Dispersion Spectra Using Lifshitz Theory, QED Acquire Exp. Spectra Calc. London Disp. Spectrum Kramers Kronig Transform Then Hamaker Constant Calc’d by Spectral Differences of London Disp. Spectra R. H. French, J. Am. Ceram. Soc., 83, 2117-46 (2000). R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007).

Optically Isotropic, Plane Parallel: vdW-Ld Formalism Example: A123 Non-retarded G(l): Thermodynamic Free Energy  Are Spectral Difference Function Between Half Space Material L or R And Interlayer Material m  Represent The Optical Contrast Also Implemented: Add-A-Layer: Up To 99 Layers Graded Interfaces Full Effects Of Retardatio

Gecko Hamaker: Open Source Hamaker Program Full Spectral, Retarded Hamaker, Coefficients http://geckoproj.sourceforge.net/

Retarded Hamaker Coefficients Speed of Light Plays a Role Transit Time Important Higher Energy Bonds Induced Dipoles De-Phase Contribution Drops Nonwetting Attractive Dispersion Force Wetting Repulsive Dispersion Force Retardation Length Can Exceed 300 nm Depending On Details Of System Water Force PS Air Water PS

Compare Energies From Hamaker Const. & Contact Angles Use Hamaker Constants => Surface Energy Interface Energy Fowkes Method Using Non-polar & Polar Liquids Experimental Uncertainties Polar Components Retract Into Free Surface Diiodomethane Non-polar Polystyrene 1 PS 2 Air Force 1 PS 3 Water Force Surface Energy Of Polystyrene (mJ/m2) Full Spectral Hamaker Polymer Handbook Fowkes Method Dispersive Component 34.7 32.5 - 33.9 40.6 – 43.2 Polar Component 6.8 – 8.2 0 - 1.8 Surface Free Energy 37.5 - 40.7 41.2- 43.8 R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007).

Gradient Properties in Grain Boundaries of SrTiO3 Index of Refraction S5 Grain Boundary = 1.56 nS13 Grain Boundary = 1.29 n=2.37 for bulk SrTiO3, Spectroscopic Ellipsometry.1 Valence Electron Density Variations From Oscillator Strength Sum Rule Units of Electrons Per nm3 for bulk SrTiO3 S5 and nS13 GB K. van Benthem, C. Elsässer, R. H. French, J. Appl. Phys, 90, 12, 6156-64, (2001), K. van Benthem, et al., Phys. Rev. Lett., 93, 227201, (2004), K. van Benthem, et al., Phys. Rev. B, 74, 205110, (2006).

A Graded Interface Approach The Sharp Interfaces of a 1|2|1 Type Model Have Unrealistic Infinite Property Gradients Are These Sharp Interface Results Applicable To Grain Boundaries? Nanoscale Approach To Apply Bulk Continuum Dispersion Theory Use Graded Interface Model Interfaces With Finite Property Gradients [ 1 | gradient | 2 | gradient | 1 ] Define Finest Length Scale For Gradients Use A Characteristic Interatomic Bond Length For SrTiO3 Use do = 0.19525 The Ti-O Bond Length in SrTiO3 Finest Scale Property Gradients Are Interatomic K. van Benthem , G. Tan, R. H. French, L. K. Denoyer, R. Podgornik, V. A. Parsegian, Phys. Rev. B, 74, (2006). R. Podgornik, R. H. French, V.A. Parsegian, J. Chem. Phys., 124, 044709, (2006)

Hamaker Coefficients: S5 & nS13 SrTiO3 GBs Compare 3 Layer, Gradient Model Using Quadroid Gradient Graded Interface Approach Doesn’t Change Findings Small Reduction in Edisp. Limiting Behavior Correct For 0 nm Core Width Dispersion Interaction Approaches 0 K. van Benthem, et al., Phys. Rev. Lett., 93, 227201, (2004). K. van Benthem, et al., Phys. Rev. B, 74, 205110, (2006).

vdW-L Dispersion Energies Of GBs GB Stabilization Energy Due To Dispersion Abrupt Model Results E ( n13) = 169 – 73 = 96 mJ/m2 E ( n5) = 169 – 24 = 145 mJ/m2 Quadroid Graded Interface Model E ( n5) = 119 – 14 = 69 mJ/m2 E ( n13) = 119 – 50 = 105 mJ/m2 London Dispersion Stabilization Energies For These Atomically Abrupt Grain Boundaries Are Appreciable Compare To Chemical Energies 3 GB = 520 mJ/m2 Surface Energy ~ 1100/mJ/m2

Optically Anisotropic Plane Parallel Morphology Hamaker Constants and Coefficients vdW-Ld Normal Forces And vdW-Ld Torques

Metallic and Semiconducting SWCNTs [9,3 Metallic] [6,5 Semiconducting] Diameter To Atomic Cores 0.423 nm 0.373 nm Build CNT’s By Rolling Graphene Shift With m,n Chirality Graphite Interlayer Spacing Is 0.167 nm Used to Define Cylinder Diamters Much Interest In Manipulating CNTs London Dispersion Interactions: Universal, Long Range Can Dispersion Interaction Be Used For SWCNT Processing? Focus On Aqueous Dispersions

ab initio Band Structures Of [6,5,s] & [9,3,m] SWCNT ab initio Band Structures and Optical Properties To Calculate Dielectric Function  To Calculate London Dispersion Spectra R. F. Rajter, R. H. French, W. Y. Ching, W. C. Carter, Y. M. Chiang, J. Appl. Phys., 101, 054303, p. 1-5, (2007). R. Rajter, R. Podgornik, V. A Parsegian, R. H. French, W. Y. Ching, to be published, Phys. Rev. B., 75, (2007).

Uniaxial Optical Properties Of [6,5,s] & [9,3,m] SWCNT Radial Directions Have Similar Properties Axial Directions Very Different Due To Metallic Axial Property Of [9,3,m] [9,3,m] Max of 933 at 0.04 eV

London Disp. Spectra Of [6,5,s] & [9,3,m] CNTs LDS Crossings => Complex Behavior e.g. Surficial Films Of Water On Ice Water Max of 78 at 0 eV [9,3,m] Peaks of 333 at 0 eV

Optically Anisotropic vdW-Ld Formalism Example: A123 Non-retarded Uniaxial Optical Properties  Is Optical Contrast With Interlayer Medium  Is Optical Anisotropy Of Material Torques Due To  In Addition To Normal Forces Still To Do: Opt. Anisotropic Add-A-Layer A(0) Is Rotation Independent Part: f(l) A(2) Is Rotation Dependent Part: f() Of vdW-Ld Interaction

vdW-Ld Spectra On Log Axes LDS Crossings Yield Repulsive And Attractive Dispersion Contributions Due To The  Spectral Difference Functions, The Optical Contrast Among Component Materials

Dispersion Torques From Optical Anisotropy Optical Anisotropy  Produces Torques To Align The Axial Axes Of The Metallic CNT’s

Optically Anisotropic And Morphologically Anisotropic (Solid Cylinders)

Optically & Morpholigically Anisotropic vdW-Ld Formalism Example: A123, Optically Uniaxial, Cylinder-Cylinder In The Far Limit Isotropic Interlayer Medium m Also Implemented: Optically Anisotropic Cylinder Substrate Near and Far Limits: Cyl. Cyl., Cyl. Sub. Transition Region Between Near And Far Limits Still To Do: Add-A-Layer Coated Cylinders Multi-wall CNTs Hollow Cylinders

Hamaker Coefficients Versus distance Near Limit Far Limit Near Limit Is < 2 Diameters, And Far Limit Is > 2 Diameters Semiconducting CNT’s Hamaker Coefficient Larger Than Metallic Far Limit Hamaker Coeff.s Larger Than Near Limit Due To  parallel

Versus Angle Hamaker Torques Small In Near Limit, Larger In Far Limit Large Torques Arise For Metallic CNT’s Arise From Large Differences In  parallel and  perpendicular, or 

vdW-Ld Torques Of Metallic CNT’s Optical And Morphological Anisotropy Both Essential For Dispersion Torques

Three Major Cases: Optical, Morphological Anisotropy Morphology: Plane Parallel Plane Parallel Cylinder Optically: Isotropic Uniaxial Uniaxial

Optical Properties & Electronic Structure: Conclusions Polystyrene ab initio: LDA Band Structure Optical Properties & Electronic Structure: Interband Transition Strength vdW-Ld Interaction: Hamaker Coefficients Electrodynamics Bulk: VUV Reflectance Interfacial: Trans. EELS TEM Surficial: Refl. EELS Surf. Sci. Probes Carbon Nanotubes Long Range Interactions In Nanoscale Science Electrodynamics: vdW-L Dispersion, Debye, Keesom Electrostatics Polar Interactions Polystyrene/Water Interface Energy From Both vdW-Ld and Polar Interactions SrTiO3 Grain Boundary Dispersion Energies Due To Reduced Physical, Electron Density, Index of Refr. ~ 5 to 10% of Chemical GB Energy New Non-Plane Parallel Hamaker Development Carbon Nanotubes ab initio Optical Properties From Band Structures CNT Optical Properties Differ Produce Different Hamaker Coefficients Method For CNT Separation By Type Optical & Morphological Anisotropy Produces Strong Dispersion Torques Optical Anisotropy  And Optical Contrast  An Interaction For Alignment Of CNT’s SrTiO3 Grain Boundaries

Observation of Aligned Adsorption Of CNTs "Controlled Two-Dimensional Pattern of Spontaneously Aligned Carbon Nanotubes", R.S. McLean, X. Huang, C. Khripin, A. Jagota, M. Zheng, Nanoletters, 6 [1] 55-60 (2006)