Nuclear astrophysics with the Munich Q3D spectrograph

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

A Study of the 30 P(p,  ) 31 S Reaction via the 32 S(d,t) 31 S Reaction and its Astrophysical Relevance Dan Irvine McMaster University CAWONAPS 2010Dec.
The structure of 30 S and the 29 P(p  30 S reaction rate Kiana Setoodehnia.
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
NucleoSynthesis of Galactic 26 Al 25 Al+p Resonances Peter Parker, Yale University Catherine Deibel, Rachel Lewis, Anuj Parikh, Christopher Wrede Jac Caggiano,
Nuclear Astrophysics II Lecture 5 Fri. June 1, 2012 Prof. Shawn Bishop, Office 2013, Ex
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
W A RICHTER UNIVERSITY OF THE WESTERN CAPE Shell-model studies of the rp reaction 25 Al(p,γ) 26 Si.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Jennifer Fallis - ERAWAST Workshop II Using beams of reclaimed 44 Ti to explore the mechanism of core collapse in supernovae Jennifer Fallis TRIUMF.
NucleoSynthesis of Galactic 26 Al 26 Al gs +p, 26 Al m +p, 25 Al+p Resonances Peter Parker, Yale University Catherine Deibel, Rachel Lewis, Anuj Parikh,
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Anuj Parikh Universitat Politècnica de Catalunya The search for “important” nuclear reactions in astrophysical environments.
The 1 st Research Coordination Meeting Reference Database for PIGE Van de Graaff Lab in Tehran activities.
Astrophysics with DRAGON: The 26g Al (p,γ) 27 Si Reaction Heather Crawford a,1 for the DRAGON Collaboration b a Simon Fraser University, Burnaby, B.C.,
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Structure of 8 B through 7 Be+p scattering 1 Jake Livesay, 2 DW Bardayan, 2 JC Blackmon, 3 KY Chae, 4 AE Champagne, 5 C Deibel, 4 RP Fitzgerald, 1 U Greife,
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Absolute resonance strength measurements of the 22 Na(p,  ) reaction Chris Wrede Center for Experimental Nuclear Physics and Astrophysics University of.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Mats Lindroos Measuring difficult reaction rates involving radioactive beams: A new approach John D’Auria, Mats Lindroos, Jordi Jose and Lothar Buchmann.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
TRIUMF Canada’s national laboratory for nuclear and particle physics Direct Measurement of the 21 Na(p,γ) 22 Mg Reaction: Resonance Strengths and γ-γ Analysis.
The neutron source for the weak component of the s-process: latest experimental results Claudio Ugalde University of North Carolina at Chapel Hill and.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Measurement of the 26 Al(d,p) 27 Al reaction to constrain the 26 Al(p,  ) 27 Si reaction rate Steven D. Pain Oak Ridge National Laboratory NS12, Argonne,
Study of the Destruction of 18 F in Novae with an Inverse (d,p) Reaction at the HRIBF Introduction/Motivation Experiment and Results Astrophysical Significance.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
CAWONAPS - Dec 10th, S(p,  ) 34 Cl Constraining nova observables: Direct measurement of 33 S(p,  ) 34 Cl in inverse kinematics Jennifer Fallis,
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Nuclear Astrophysics ARUNA Workshop, Notre Dame, IN Carl R. Brune Ohio University, Athens Ohio June 12-13, 2014.
Search for low spin states at high excitation energies in 20 Ne with the p,t reaction iThemba LABS & Stellenbosch University Energy Postgraduate Conference.
Activities and Opportunities at the accelerator lab in Bochum H.-W. Becker, NUPECC Small Scale Facilities workshop, 7./8. Sep
October 23, 2006HRIBF Workshop, ORNL1/11 First Experimental Constraints on the interference of 3/2 + resonances in the 18 F(p,  ) 15 O reaction Kyung.
H. Schatz, September 2012 X-ray bursts X-ray bursts on neutron stars: Most common thermonuclear stellar explosions.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Nuclear Structure Information for Fundamental Physics a legacy of T.F. using the Q3D with the Tandem.
Studies on alpha-induced astrophysical reactions using the low-energy RI beam separator CRIB Studies on alpha-induced astrophysical reactions using the.
Alex MurphyPROCON Proton unbound states in 21 Mg and their astrophysical significance Alex Murphy Nova Herculis 1934: AAT Nova Persei 1901: Herschel.
The 18 F(p,  ) 15 O reaction and RIB developments F. de Oliveira Santos.
Beta decay spectroscopy studies of novae and x-ray bursts
David Mountford University of Edinburgh
Young Researchers Session in IFIN-HH 2016
Anuj Parikh Universitat Politècnica de Catalunya
Nuclear Reaction Studies for Explosive Nuclear Astrophysics
Presolar Grains Bulk of material in the solar system is a mixture from a large number of stellar source---mixing in interstellar medium or during solar.
Rosario Gianluca Pizzone
Carbon, From Red Giants to White Dwarfs
Indirect reactions for the Tandem-Alto Pole of Orsay
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
probability of surviving
Nucleosynthesis and formation of the elements
Recoil charge state distributions in 12C(a,g)16O at DRAGON
34S(p,ϒ)35Cl and 34g,mCl(p,ϒ)35Ar
A Study in Garnet & Gold – Unveiling mysteries with the SE-SPS
Presentation transcript:

Nuclear astrophysics with the Munich Q3D spectrograph Anuj Parikh Universitat Politècnica de Catalunya (UPC) Institut d'Estudis Espacials de Catalunya (IEEC)

Classical nova explosions Compact object: white dwarf (CO / ONe) Lmax: ~ 104 – 105 Lsol tlightcurve: ~ days – months trec: ~ 104 – 105 yr Tp: ~ 0.1 – 0.4 GK #Galaxy: ~ 30 / yr Ejecta: ~ 10-4 – 10-5 Msol / nova Hardy and PPARC ~1011 km nucleosynthesis: H – Ca nuclear reactions:  mostly experimental Most of the thermonuclear reaction rates involved are constrained by experiments Nova Cygni 1992 (d ~ 10 000 ly) HST

OBSERVATIONS Nova Her 1934 (optical), d ~ 500 ly March 1934 May 1934 1974 0.1 ly Vanlandingham et al. (1997) Nova V693 CrA 1981 “typical”

OBSERVATIONS mass fraction in ejecta José and Hernanz (1998)

MODELS 13C, 15N, 17O José, Casanova, Moreno, García-Berro, AP, and Iliadis (2010)

MODELS 13C, 15N, 17O solar José and Hernanz (2007)

MODELS Convection via 12C abundance (2D model) ~500 km 800 km t = 214 s t = 234 s ~500 km 800 km t = 279 s t = 498 s Casanova et al. (2010)

NUCLEAR PHYSICS Nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Variation of each of 175 reaction rates within errors

NUCLEAR PHYSICS Nova sensitivity study (Iliadis et al. (2002)) : ■ T-ρ-t profiles from 5 different hydrodynamic nova simulations ■ Variation of each of 175 reaction rates within errors Fox et al. 2004,2005; Chafa et al. 2005,2007 Parete-Koon et al. 2003 Bardayan et al. 2001, 2005; Graulich et al. 2001, de Sereville 2003, 2005, 2007; Kozub et al. 2005, Chae et al. 2006, Beer et al. 2011 Davids et al. 2003, Bishop et al. 2003, D’Auria et al. 2004 Hale et al. 2002 Rowland et al. 2004, Hale et al. 2004 Visser et al. 2007, Zegers et al. 2008, Lotay et al. 2008 Ruiz et al. 2006 Lewis et al. 2005, Deibel et al. 2008, Lotay et al. 2009 Jenkins et al. 2006, Ma et al. 2007, Wrede et al. 2007, 2009; Parikh et al. 2009

NUCLEAR PHYSICS Nova sensitivity study (Hix et al. (2003)) : ■ T-ρ-t profile from one hydrodynamic nova simulation ■ Monte-Carlo: Variation of all rates by random factors…10000 trials 22Na (t1/2 = 2.6 y, E = 1.275 MeV): 22Na(p,)23Mg, 20Ne(p,)21Na, 23Na(p,a)20Ne, 23Na(p,)24Mg, 21Na(p,)22Mg 26Al (t1/2 = 0.7 My, E = 1.809 MeV): 23Mg(p,)24Al, 26Al(p,)27Si, 23Na(p,)24Mg, 23Na(p,a)20Ne, 20Ne(p,)21Na

NUCLEAR PHYSICS 33S(p,γ)34Cl 26Al(p,γ)27Si 30P(p,γ)31S José, Casanova, Moreno, García-Berro, AP, and Iliadis (2010)

Impact of rate: 30P(p,γ)31S Iliadis et al. 2002 José et al. 2001

Resonant component of the thermonuclear rate: Measure directly or indirectly ERCM and () (masses, spins, partial widths, lifetimes)

CASE STUDY: 26Al(p,)27Si ← Ex (27Si) (keV) Determine ER directly: Buchmann et al. (1984) Münster, Stuttgart, Bochum 26Al target, Ge, NaI Counts Ep (keV) Or indirectly (as Ex): Schmalbrock et al. (1986) Notre Dame 100 cm spectrograph 28Si(3He,a)27Si ← Ex (27Si) (keV) Counts For nova, AGB, WR conditions, all ER are ~known for 27Si

CASE STUDY: 26Al(p,)27Si Determine (ωγ) directly: Ruiz, AP, José et al. (2006) ER = 184 keV resonance 2 weeks of 26Al beam (~3 x 109 pps) 120 27Si events DRAGON recoil separator @ TRIUMF

CASE STUDY: 26Al(p,)27Si Determine (ωγ) directly: Or indirectly: Ruiz, AP, José et al. (2006) ER = 184 keV resonance 2 weeks of 26Al beam (~3 x 109 pps) 120 27Si events DRAGON recoil separator @ TRIUMF Or indirectly:

CASE STUDY: 26Al(p,)27Si Determine (ωγ) directly: Ruiz, AP, José et al. (2006) ER = 184 keV resonance 2 weeks of 26Al beam (~3 x 109 pps) 120 27Si events DRAGON recoil separator @ TRIUMF Or indirectly: Need proton C2S and Jπ to calculate (ωγ) indirectly

CASE STUDY: 26Al(p,)27Si Determine (ωγ) directly: Or indirectly: Ruiz, AP, José et al. (2006) ER = 184 keV resonance 2 weeks of 26Al beam (~3 x 109 pps) 120 27Si events DRAGON recoil separator @ TRIUMF Or indirectly: Vogelaar et al. (1996), Princeton Q3D, ΔE ~ 12 keV, 26Al(3He,d)27Si

Maier-Leibnitz-Laboratorium (Garching, Germany)

Maier-Leibnitz-Laboratorium (Garching, Germany)

Maier-Leibnitz-Laboratorium (Garching, Germany)

Maier-Leibnitz-Laboratorium (Garching, Germany) 31P + 3He → 31S + 3H 3H 3H 3H 3H 31P, 31S* 3He

Maier-Leibnitz-Laboratorium (Garching, Germany)

Superior energy resolution of the MLL Q3D helps! IDEA: Using magnetic spectrographs in nuclear astrophysics to determine ER, Jπ, C2S, Γx via indirect studies MLL Q3D dΩ ~ 14 msr ΔE/E ~ 2 x 10-4 Δρ ~ 6 cm I3He ~ 500 nA VTmax ~ 14 MV Yale Enge Split-Pole dΩ ~ 3.2 msr ΔE/E ~ 1 x 10-3 Δρ ~ 14 cm I3He ~ 50 nA VTmax ~ 18 MV Superior energy resolution of the MLL Q3D helps!

Nova explosions: 30P(p,γ)31S Direct: hard… For DRAGON, need >106 pps 30P [S1108 – Wrede, Hutcheon et al., Stage 1] Jenkins et al. (2005, 2006): 12C(20Ne,nγ)31S @ ANL-Gammasphere energies, spins (high-spin states), new state 30P+p Q = 6133 Ma et al. (2007): 32S(p,d)31S, angular distributions @ ORNL energies, spins Wrede et al. (2007, 2009): 31P(3He,t)31S* → p + 30P @ Yale energies, new states, Γp /Γ for Ex > 6719 keV 31S 30P (1+, t1/2 = 2.5 min)

Using 31P(3He,t)31S for 30P(p,)31S E3He = 20 MeV 1.5° Yale Split-Pole ΔE ~ 25 keV 5 d @ 50 nA 3 new states! T < 0.4 GK 30P+p Q = 6133 Wrede et al. (2007) 31S

Using 31P(3He,t)31S for 30P(p,)31S E3He = 20 MeV 1.5° Yale Split-Pole ΔE = 25 keV 5 d @ 50 nA 3 new states! T < 0.4 GK 31P(3He,t)31S E3He = 25 MeV 10° MLL Q3D 12 h @ 650 nA ΔE = 10 keV AP et al. (accepted) counts 30P+p Q = 6133 31S Etriton

Using 31P(3He,t)31S for 30P(p,)31S E3He = 20 MeV 1.5° Yale Split-Pole ΔE = 25 keV 5 d @ 50 nA 1/2+ dσ/dΩ (μb/sr) 5/2– dσ/dΩ (μb/sr) ϴCM (deg) ϴCM (deg) 31P(3He,t)31S E3He = 25 MeV 10° MLL Q3D 12 h @ 650 nA ΔE = 10 keV AP et al. (accepted) counts 30P+p Q = 6133 31S Etriton

Using 31P(3He,t)31S for 30P(p,)31S AP et al. (accepted) José et al. 2001

Using 32S(d,t)31S for 30P(p,)31S 31P(3He,t)31S E3He = 20 MeV 1.5° Yale Split-Pole ΔE ~ 25 keV Wrede et al. (2007) 32S(3He,d)31S Ed = 24 MeV 20° MLL Q3D 6 h @ 750 nA ΔE ~ 8 keV PRELIMINARY A. A. Chen et al.

Using 28Si(3He,4He)27Si for 26Al(p,)27Si Schmalbrock+ (1986) Notre Dame E = 25 MeV 20 deg MLL Q3D, 2 h @ 500 nA AP et al. (in prep) ΔE ~ 15 keV PRELIMINARY Ex(27Si)

Using 28Si(3He,4He)27Si for 26Al(p,)27Si Schmalbrock+ (1986) Notre Dame E = 25 MeV 20 deg MLL Q3D, 2 h @ 500 nA AP et al. (in prep) ΔE ~ 15 keV PRELIMINARY

Using 34S(3He,t)34Cl for 33S(p,)34Cl FIRST search for 34Cl p-threshold states with 34S(3He,t)34Cl → 9 new states within 600 keV of Sp(34Cl) 5143 5576 Ex(34Cl) 34S(3He,t)34Cl E3He = 25 MeV; 15° MLL Q3D ΔE = 10 keV 24 h @ 500 nA Endt (1990) AP et al. (2009)

Using 33S(3He,d)34Cl for 33S(p,)34Cl FIRST search for 34Cl p-threshold states with 33S(3He,d)34Cl → for C2S…PRELIMINARY 5143 Ex(34Cl) 33S(3He,d)34Cl E3He = 25 MeV; 10° MLL Q3D ΔE ~ 9 keV 1 h @ 500 nA Endt (1990) AP et al.

www.Q3D.org T. Faestermann, R. Krücken, T. Behrens, V. Bildstein, S. Bishop, K. Eppinger, C. Herlitzius, C. Hinke, O. Lepyoshkina, P. Maierbeck, G. Rugel, M. Schlarb, D. Seiler, K. Wimmer R. Hertenberger, H.-F. Wirth A. A. Chen, K. Setoodehnia J. A. Clark, C. Deibel C. Wrede R. Longland