Experimental Progress on Zonal Flow Physics in Toroidal Plasmas

Slides:



Advertisements
Similar presentations
Statistical Properties of Broadband Magnetic Turbulence in the Reversed Field Pinch John Sarff D. Craig, L. Frassinetti 1, L. Marrelli 1, P. Martin 1,
Advertisements

Short wavelength ion temperature gradient driven instability in toroidal plasmas Zhe Gao, a) H. Sanuki, b) K. Itoh b) and J. Q. Dong c) a) Department of.
Two-dimensional Structure and Particle Pinch in a Tokamak H-mode
M. Zuin 14th IEA RFP workshop, Padova, April, 26-28, 2010 Alfvén eigenmodes in RFX-mod M. Zuin, S. Spagnolo, E. Martines, B. Momo, R. Cavazzana, M. Spolaore,
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Institut für Plasmaforschung Universität Stuttgart Long-distance correlation of fluctuations under strong ExB shear in TJ-K P. Manz, M. Ramisch, U. Stroth.
Confinement Study of Net-Current Free Toroidal Plasmas Based on Extended International Stellarator Database H.Yamada 1), J.H.Harris 2), A.Dinklage 3),
17-th IAEA TM on RUSFD Lisbon, 23-rd of October The study of GAM properties in the T-10 tokamak A.V. Melnikov1, L.G. Eliseev1, S.V. Perfilov1, S.E.
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Intermittent Transport and Relaxation Oscillations of Nonlinear Reduced Models for Fusion Plasmas S. Hamaguchi, 1 K. Takeda, 2 A. Bierwage, 2 S. Tsurimaki,
SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A.
1 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto,
Non-diffusive terms of momentum transport as a driving force for spontaneous rotation in toroidal plasmas K.Ida, M.Yoshinuma, LHD experimental group National.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Interplay between energetic-particle-driven GAMs and turbulence D. Zarzoso 15 th European Fusion Theory Conference, Oxford, September CEA, IRFM,
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Review of Collaboration Activities J.Q. Dong* H.D. He, Y. Shen, and A.P. Sun Southwestern Institute of Physics, China *Institute for Fusion Theory and.
HL-2A 1 Roles of Turbulence Induced Zonal Flow and Diamagnetic Flow in L-I-H Transitions J.Q. Dong, J. Cheng, L.W. Yan, Z.X. He, K. Itoh, H. S. Xie, Y.
Velocity Detection of Plasma Patterns from 2D BES Data Young-chul Ghim(Kim) 1,2, Anthony Field 2, Sandor Zoletnik 3 1 Rudolf Peierls Centre for Theoretical.
11 Role of Non-resonant Modes in Zonal Flows and Intrinsic Rotation Generation Role of Non-resonant Modes in Zonal Flows and Intrinsic Rotation Generation.
Research activity on the T-10 tokamak G. Kirnev on behalf of T-10 team Nuclear Fusion Institute, RRC “Kurchatov Institute”, Moscow , Russia.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Physics of Zonal Flows P. H. Diamond 1, S.-I. Itoh 2, K. Itoh 3, T. S. Hahm 4 1 UCSD, USA; 2 RIAM, Kyushu Univ., Japan; 3 NIFS, Japan; 4 PPPL, USA 20th.
Edge and Internal Transport Barrier Formations in CHS S. Okamura, T. Minami, T. Akiyama, T. Oishi 1, A. Fujisawa, K. Ida, H. Iguchi, M. Isobe, S. Kado.
HL-2A Jiaqi Dong Southwestern Institute of Physics & Institute for Fusion Theory and Simulation, ZJU International West Lake Workshop on Fusion Theory.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA CAS K EY L ABORATORY OF B ASIC P LASMA P HYSICS Recent experimental results of zonal flows in edge tokamak.
Relationship Between Edge Zonal Flows and L-H Transitions in NSTX S. J. Zweben 1, T. Munsat 2, Y. Sechrest 2, D. Battaglia 3, S.M. Kaye 1, S. Kubota 4.
J. Boedo, UCSD Fast Probe Results and Plans By J. Boedo For the UCSD and NSTX Teams.
Effects of Flow on Radial Electric Fields Shaojie Wang Department of Physics, Fudan University Institute of Plasma Physics, Chinese Academy of Sciences.
Instabilities, Turbulence and Transport
Multi-scale turbulence experiment in HT-7 takamak Li Yadong Li Jiangang Zhang Xiaodong Ren Zhong Zhang Tou Lin Shiyao and HT-7 Team Institute of plasma.
1 Magnetic components existing in geodesic acoustic modes Deng Zhou Institute of Plasma Physics, Chinese Academy of Sciences.
Using microwaves to study fast ion driven modes in NSTX N.A. Crocker, S. Kubota, W.A. Peebles, G. Wang, T. Carter (UCLA); E.D. Fredrickson, B.P. LeBlanc,
Y. Kishimoto 1,2), K. Miki 1), N. Miyato 2), J.Q.Li 1), J. Anderson 1) 21 st IAEA Fusion Energy Conference IAEA-CN-149-PD2 (Post deadline paper) October.
Turbulent Convection and Anomalous Cross-Field Transport in Mirror Plasmas V.P. Pastukhov and N.V. Chudin.
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
52nd Annual Meeting of the Division of Plasma Physics, November , 2010, Chicago, Illinois 5-pin Langmuir probe configured to measure floating potential.
53rd Annual Meeting of the Division of Plasma Physics, November , 2010, Salt Lake City, Utah 5-pin Langmuir probe configured to measure the Reynolds.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Nonlinear plasma-wave interactions in ion cyclotron range of frequency N Xiang, C. Y Gan, J. L. Chen, D. Zhou Institute of plasma phsycis, CAS, Hefei J.
G. Matsunaga 1), M. Okabayashi 2), N. Aiba 1), J. A. Boedo 3), J. R. Ferron 4), J. M. Hanson 5), G. Z. Hao 6), W. W. Heidbrink 7), C. T. Holcomb 8), Y.
Profiles of density fluctuations in frequency range of (20-110)kHz Core density fluctuations Parallel flow measured by CHERS Core Density Fluctuations.
Towards an Emerging Understanding of Nonlocal Transport K.Ida 1), Z.Shi 2), H.J.Sun 2,3), S.Inagaki 4), K.Kamiya 5), J.Rice 6), N.Tamura 1), P.H.Diamond.
ASIPP Guosheng Xu EX/11-1 FEC 2012 San Diego USA 8-13 Oct. 1 Evidence of Zonal-Flow-Driven Limit-Cycle Oscillations during the L-H Transition and at H-mode.
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
ASIPP 1 Institute of Plasma Physics, Chinese Academy of Sciences Solved and Unsolved Problems in Plasma Physics A symposium in honor of Prof. Nathaniel.
G.Y. Park 1, S.S. Kim 1, T. Rhee 1, H.G. Jhang 1, P.H. Diamond 1,2, I. Cziegler 2, G. Tynan 2, and X.Q. Xu 3 1 National Fusion Research Institute, Korea.
1 Ernst/IAEA EX/2-3/Oct Controlling H-Mode Particle Transport with Modulated Electron Heating in DIII-D and Alcator C-Mod via TEM Turbulence by D.R.
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
The study of NBI-driven AE chirping mode
Carlos Hidalgo Laboratorio Nacional de Fusión CIEMAT Madrid, Spain
25th IAEA FUSION ENERGY CONFERENCE EX/11-3
IAEA Fusion Energy Conference 2012, 8-13 Oct., San Diego, USA
Spontaneous rotation in stellarator and tokamak
Presented by: Chen Wei1 (陈伟)
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
Influence of energetic ions on neoclassical tearing modes
T. Morisaki1,3 and the LHD Experiment Group
NATIONAL RESEARCH CENTER “KURCHATOV INSTITUTE”
T. Morisaki1,3 and the LHD Experiment Group
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
Presentation transcript:

Experimental Progress on Zonal Flow Physics in Toroidal Plasmas A. Fujisawa, T. Ido, A. Shimizu, S. Okamura, K. Matsuoka, Y. Hamada, 1K. Hoshino, 2Y. Nagashima, 1K. Shinohara, H. Nakano, S. Ohshima, 1Y. Miura, K. Itoh, S. –I. Itoh NIFS, 1JAEA, 2RIAM, Japan M. Shats, H. Xia, ANU, Australia J. Q. Dong, L. W. Yan, K. J. Zhao, SWIP, China G. D. Conway, *U. Stroth, Max-Planck institute,*Universität Stuttgart, Germany A. Melnikov, L.G. Eliseev, S.E. Lysenko and S.V. Perfilov, Kurchatov Institute, Russia C. Hidalgo, CIEMAT, Spain G. R. Tynan, *G. R. Mckee, C. Holland, *R. J. Fonck, *D. K. Gupta, P. H. Diamond, UCSD, *Univ. Wisconsin U.S.A.

Zonal flow in atmosphere in Jupiter What is a ZONAL FLOW Is that really present in toroidal plasmas? ITER Poloidal Crosssection m=n=0, kr=finite ExB flows Zonal flows are ubiquitous. Zonal flow in atmosphere in Jupiter 2. Turbulence driven 1. No linear instability 3. No radial transport Two braches of ZFs in a toroidal plasma i) stationary zonal flows (sZF) near-zero frequency ~0 kHz ii) geodesic acoustic modes (GAMs) an oscillatory branch ~ 10-50 kHz P. H. Diamond et al. PPCF 47 R35 (2005)

Why are ZFs Important for Fusion? Because the zonal flows are deeply associated with anomalous transport. gradients damping turbulence Zonal flows trapping no transport transport shearing sZF>GAM Plasma Transport Drift waves + Zonal flows the new paradigm Nonlinear interaction between zonal flows and turbulence controls transport. A question: the paradigm shift is experimentally supported?

Zonal Flow Experiments A challenge to experimentalists - electric field or flow measurements in high temporal and spatial resolution HL-2A (probes) JIPPT-IIU (HIBP) T-10 (HIBP) ASDEX-U (reflectometry) JFT-2M(HIBP&probes) DIIID (BES) CLD (probes) CASTOR (probes) TJ-II(probes) TEXT-U (HIBP) H1 (probes) CSDX (probes) HT-7 (probes) CHS(HIBP) LMD (probes) TJ-K(probes) Devices i) zonal structure symmetry (m=n=0) a finite radial wavelength ii) nonlinear coupling with turbulence Discoveries iii) effects on transport More than a dozen papers have been published as a PPCF cluster (2006).

Existence of Stationary Zonal Flow Proceeded by a pioneer work in HT-7, CHS has confirmed the existence of sZF G. S. Xu et al., PRL 91 125001 (2003). ASDEX-U 1 100 f (kHz) Power (flow) sZF Showing Symmetry CHS time (ms) f~0.5 kHz G. D. Conway, 31st EPS conf. London Showing a finite radial wavelength time (ms) 50 f (kHz) Power (flow) m=0 DIII-D A. Fujisawa et al. PRL 93 165002 (2004). Zonal structure is found! New techniques for ZF detection are developed in CATOR and CLD. This IAEA EX2-3: G. Mckee et al.

Pattern of Stationary Zonal Flow Using the cross-correlation functions between two electric fields at different radii, This is the discovery of stationary zonal flow.

GAMs in Spectra After H1-heliac reported the existence of GAM, M. G. Shats et al., PRL 88 45001 (2002) 1000 1 f (kHz) (Log) 100 40 60 f (kHz) JFT2M T10 TEXT-U flow(BES) flow(reflectometry) Potential (HIBP) 40 f (kHz) DIII-D ASDEX-U potential (probe) 100 1 f (kHz) HL-2A (Log) Coherent modes have been detected in many toroidal devices The HL-2A tokamak confirms the complete symmetry (n=m=0) of GAM This IAEA EX/P4-35 L.W. Yan et al.

GAM Frequency Dependence fGAM (kHz)- theory 25 fGAM (kHZ) cs/R k=1.12 k=1.73 k=1.40 k=1.27 k=1.62 ASDEX This IAEA EX2-1 G. Conway et al. DIII-D 4.0 7.0 q95 GAM amplitude Landau damping? DIII-D The frequency of the coherent modes satisfies the expected dependence. The studies of GAM have an impact on understanding of plasma turbulence G. R. McKee et al., PPCF 48 S123 (2006).

How to Prove Nonlinear Couplings -100 100 120 f1 (kHz) f2 (kHz) strong coupling f1+f2=f3 ~±10kHz JFT2M This IAEA EX2-2 K. Hoshino et al. Bicoherence analysis can quantify the strength of three wave coupling. f1+f2= f3 (k1+k2= k3 ) (bicoherence=0, if f1+f2≠0) Other techniques (energy transfer, autocorrelation, etc. ) are developed M. Shats et al., PPCF 48 S17 (2006). Reynolds stress to drive mean flow Direct evaluation of perpendicular term has been widely performed (CSDX, HT-6M, LMD, TJ-K, etc.) G. R. Tynan et al.PPCF 48 S51 (2006). - Direct measurement of energy transfer term from turbulence to flow is performed in TJ-II, showing importance of parallel component . This IAEA EX/P7-2 C. Hidalgo et al.

Energy Transfer between ZF and Turbulence Turbulence power changes intermittently with ‘zonal flow’ CHS turbulence ‘sZF’ GAM normalized power Time (ms) 40 70 sZF GAM turb. power coherence Anti-phase behavior suggests direct energy transfer between ‘zonal flow’ and turbulence A. Fujisawa et al. PPCF 48 A365 (2006).

Effects on Transports

ZF Effects on Transport HIBP has an advantage in simultaneous measurements of ZF and particle flux Stationary zonal flow particle flux density maximum minimum potential fluctuation 5ms 40 70 Time (ms) f (kHz) 30 80 power ZF f (kHz) 200 Conditional averages 0.5 CHS A. Fujisawa et al., PPCF 48 S205 (2006). Particle flux is really modulated with stationary zonal flow. Similar result is obtained for GAMs in JFT-2M. T. Ido et al., PPCF 48 S41 (2006)

confinement is improved Better Confinement in Enhanced ZF CHS Why is the confinement improved in shearless regime inside the barrier? Power ( E/∇T) ~ 10-3 radius 1 Potential (or Temperature) confinement is improved without shear Common ITB in helical plasmas At a radius without mean Er-shear inside the barrier No ITB Clear difference in energy partition ITB A larger fraction of zonal flows contributes to confinement improvement inside the barrier! Importance of zonal flows on confinement is demonstrated.

(temporal correlation) Turbulence modulation Turbulence modulation What Experiments Achieved structure nonlinear coupling effects on transport n=0 confirmed Importance of flow energy partition is demonstrated S-ZF m=0 confirmed confirmed (temporal correlation) Turbulence modulation is observed. kr=finite confirmed m=0 confirmed in a case n=m=0 confirmed (bicoherence) Turbulence modulation is observed GAM kr=finite proven fGAM~cs/R Eigenmode property The experiments on zonal flows have made a large progress. The obtained knowledge are still fragmental, but support the fundamental expectations of the theories.

Summary - Zonal flows really do exist in toroidal plasmas. The world-wide experiments on zonal flows show, ASDEX-U, CASTOR, CHS, CLD, CSDX , DIII-D, H1, HL-2A, HT-6M, HT-7, JFT-2M, JIPPT-IIU,LMD, T-10, TEXT-U, TJ-II, TJ-K and so on - Zonal flows really do exist in toroidal plasmas. Common physics Zonal flow in CHS - The experiments support the paradigm shift! Drift waves + Zonal flows - The prospect of ITER is enhanced. ITER will be more analogous to the Sun than the Jupiter.