COLLISIONS IN ULTRACOLD METASTABLE HELIUM GASES G. B. Partridge, J.-C. Jaskula, M. Bonneau, D. Boiron, C. I. Westbrook Laboratoire Charles Fabry de l’Institut.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Dynamics of Spin-1 Bose-Einstein Condensates
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Interplay Between Electronic and Nuclear Motion in the Photodouble Ionization of H 2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht, M Lavollée,
KAPITZA-DIRAC EFFECT Eric Weaver Phys 4P62. General Outline  Theorized in 1933 by Kapitza and Dirac  Reflection of electrons from standing light waves.
In Search of the “Absolute” Optical Phase
electrostatic ion beam trap
Laser System for Atom Interferometry Andrew Chew.
Generation of short pulses
Quantum Computing with Trapped Ion Hyperfine Qubits.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Single Shot Combined Time Frequency Four Wave Mixing Andrey Shalit, Yuri Paskover and Yehiam Prior Department of Chemical Physics Weizmann Institute of.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Fluctuations in Strongly Interacting Fermi Gases Christian Sanner, Jonathon Gillen, Wujie Huang, Aviv Keshet, Edward Su, Wolfgang Ketterle Center for Ultracold.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
M. Trippenbach P. Zin, J. Chwedenczuk, A. Perez
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Guillermina Ramirez San Juan
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Hanbury Brown and Twiss Effect Anton Kapliy March 10, 2009.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Tools for Nuclear & Particle Physics Experimental Background.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Quantum Technologies Conference, Toruń 1 The project „Photonic implementations of quantum-enhanced technologies” is realized within the TEAM.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
1 Experimental particle physics introduction. 2 What holds the world together?
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Dynamics of a BEC colliding with a time-dependent dipole barrier OSA Frontiers in Photonics 2006 starring Chris Ellenor as Mirco Siercke Aephraim Steinberg’s.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Agenda Brief overview of dilute ultra-cold gases
Metrology and integrated optics Geoff Pryde Griffith University.
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Lasers and effects of magnetic field
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Novel quantum states in spin-orbit coupled quantum gases
Spectroscopy of ultracold bosons by periodic lattice modulations
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Presentation transcript:

COLLISIONS IN ULTRACOLD METASTABLE HELIUM GASES G. B. Partridge, J.-C. Jaskula, M. Bonneau, D. Boiron, C. I. Westbrook Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau France

2 Outline Methods, apparatus, He*. Motivation and Background - Optics, atomoptics, quantum optics, quantum atom optics… Optical Trapping and Relative Number Squeezing Experiments: 4-wave mixing of matter waves Spin Mixtures

3 Motivation, atom optics… Optics : Photons, waves… wave particle duality. Atomic physics  atom optics : i.e – slits, interferrometers, etc Bec  coherent atom optics: Atom Laser, fringes, + nonlinear atom optics (interactions): 4wm, solitons… Quantum atom optics? -ex’s correlations, squeezing, entanglement, teleportation… Use counting, single particles, statistics… -- Key is detection: metastable Helium (He*). T. Pfau (Stuttgart) L. Deng et al. (NIST) Strecker et al. (Rice) Andrews et al Science,275,637,1997

4 He* : What’s it hiding? The 2 3 S 1 state of He has a decay time ~ 8000 s !* *single atom ~ spin polarized This energy can kick off electrons & ionize atoms of surfaces that the atom meets. The stored energy of the metastable state is 19.8 eV/atom. Add in a potential, get an avalanche of electrons.  High gain amplifier = single atom sensitivity. e-e- + (So what?)

5 Trapping and Cooling He* Laser cooling helium? Behaves a lot like an alkali-metal. (Cycling Optical Transition, magnetically trappable ) I I

6 Single Atom Detection Use a micro-channel plate (many e- avalanche detectors in parallel) to give position information. Gather resulting electric pulses using crossed delay lines. Use relative arrival times to reconstruct atoms’ positions (time of flight) in 3D.

7 A new tool for He* Statistical measurements: 1000’s of repetitions. magnetic trap was not engineered for this… (although we try anyway)  Long term: favors Optical Trap magnetic optical TOF Also, better geometry: aligns long axis of potential ( short TOF, short correlation length) w/ high resolution direction, Z. Gives freedom to try spin mixtures… First step towards more complicated potentials for He* (lattices, disorder etc.)

8 BEC of He* in the optical trap N 0 = 10 5 r = 1.5 kHz, z = 8 Hz Transfer from magnetic trap after some pre-cooling: N = 5 x 10 6, T = 15  K Evaporate by reducing intensity of trap laser over ~ 4 sec. G. B. Partridge, J.-C. Jaskula, M. Bonneau, D. Boiron, C. I. Westbrook, Phys. Rev. A 81, (2010).

9 Quantum Optics: photon pairs

10 Matter Wave FWM: atom pairs S-wave interactions lead to spherical shell of scattered atoms at k=k S  spontaneous FWM k0k0 k0k0 kSkS kSkS k0k0 k0k0 Create an m = 0 condensate w/ raman pulse. Split BEC into two momentum components with Bragg pulse: +/- k 0

11 The “intuitive” result Scattered pairs are correlated… 0 Δt P(Δt) k0k0 k0k0 kSkS kSkS Like in photon pairs: “Enhanced coincidence rate when phase matching condition is met.”

12 Beyond Optics: smaller sphere |k S | < |k 0 | k0k0 k0k0 kSkS kSkS Energy Cost to put atom into scattered mode (still overlapped w/ condensate). k0k0 k0k0 kSkS kSkS (per atom) Energy gain from removal of atom from condensate mode < “energy balance” V. Krachmalnicoff, J.-C. Jaskula, M. Bonneau, V. Leung, G. B. Partridge, D. Boiron, C. I. Westbrook, P. Deuar, P. Zin, M. Trippenbach, K. Kheruntsyan, Phys. Rev. Lett. 104, (2010).

13 Plus, the sphere’s not a sphere After colliding, atoms still have to get out of the region of the condensates. i.e. they roll down the mean field hill: V = 2g  (r,t) But the hill is collapsing out from under them. Anisotropy of BEC’s leads to directional acceleration Lesson Learned: Do Q.O. experiments using atoms, but be careful about simple 1:1 intuition. There are differences, for better or worse… Analogy? ponderomotive force in high harmonic generation (Balcou et al PRA 1997) Phys. Rev. Lett. 104, (2010).

14 Intermediate Q.O.: Relative N Squeezing Heidmann et al. PRL (1987) A B Measurement of intensity noise between “twin” beams. Reduction in noise, 30% below the shot noise limit!

15 New Atom Pairs RF + Bragg pulse. Optical Trap BEC Back-to-Back Correlations: 3600 shots Collision along long axis + better repeatability gives improved S/N. Now what about squeezing?

16 Matter Wave N Squeezing Divide scattered halo into sections, compare number difference in geometrically opposing zones to that of non-opposing zones. (for uncorrelated N, i.e. shot noise) 1 M 16 zones

17 Details… Detail 1: Raw data ~ -0.5 dB squeezing Why isn’t it perfect? (partly b/c its an experiment) Specifically, the detector efficiency, , limits the measured variance. Perfect correlations:  M = (1-  )  = 0.6 (“open area”) : -3 dB  =.13 (best estimate): -13 dB Detail 2: Effect of of correlation length: ~Measurement bandwidth

18 What’s next?

19 But! Trapped He* gases are prone to loss due to Ionization-enhanced inelastic loss processes. Spin Polarization in the m J = 1 provides stabilization by ~5 orders of magnitude. What about other states and combinations of states? State specific loss constants unconfirmed experimentally (only m J = 1 is magnetically trappable) With optical trap, we can think about using different spin states (m J = +1,-1,0)  spin mixtures, spinor condensates … RF transfers: spin mixtures Alternate Future: spin mixtures

20 Loss Rates in a spin mixture Inelastic Loss Experiment 1: Put them all together and see what survives… “Small” loss rate:  01,  0-1,  11,  -1-1 “Large” loss rate:  00,  ±1 G. B. Partridge et al., Phys. Rev. A 81, (2010).

21 Quantitative Loss Rates  00 = 6.6(4) × 10 −10 cm 3 /s  ±1 = 7.4(10) × 10 −10 cm 3 /s.  Not necessarily prohibitive! (for certain things…) Inelastic Loss Experiment 2: Make careful measure of the dominant processes  00  ±1. G. B. Partridge et al., Phys. Rev. A 81, (2010).

22 Summary 1.Quantum Atom Optics: Spontaneous FWM of deBroglie matter waves. Don’t forget they’re atoms. 2.Relative Number Squeezing for correlated atom pairs. Atomic version of a Quantum Optics Classic. 3.Spin Mixtures in of He* ? Stay tuned…

23 Thanks! Questions?