Learning Target: Explain the electromagnetic spectrum. Learning Outcome: Be able to describe a wave in terms of frequency, wavelength, speed, and amplitude.

Slides:



Advertisements
Similar presentations
Ch. 13 Electrons in Atoms Ch Models of the Atom
Advertisements

Arrangement of the Electrons Chapter 4 (reg.)
Electron Configuration and New Atomic Model Chapter 4.
Honors Chemistry Section 4.1
Electromagnetic Radiation
Chapter 5 Electrons In Atoms.
Properties of Light Is Light a Wave or a Particle?
Arrangement of Electrons in Atoms Part One Learning Objectives Read Pages Asgn #16: 103/1-6 1.
ELECTROMAGNETIC RADIATION AND THE NEW ATOMIC MODEL.
The Development of a New Atomic Model.
ELECTRONIC STRUCTURE OF ATOMS
Electromagnetic Radiation and Light
Where are the electrons ? Rutherford found the nucleus to be in the center. He determined that the atom was mostly empty space. So, how are the electrons.
Chemistry Chapter 4 Arrangement of Electrons in Atoms
Wave Description of Light
I II III  Suggested Reading Pages  Section 4-1 Radiant Energy.
Chapter 5 Section 5.1 Electromagnetic Radiation
Chapter 4 Electron Configurations. Early thoughts Much understanding of electron behavior comes from studies of how light interacts with matter. Early.
Electrons in Atoms By: Ms. Buroker. Okay … We now know that an element’s identity lies in its number of protons … but there is another particle which.
Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model.
Modern Chemistry Chapter 4 Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms The Development of a New Atomic Model.
Electrons in Atoms Chapter 5. Duality of Light Einstein proved that matter and energy are related E = mc 2 Einstein proved that matter and energy are.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Mullis1 Arrangement of Electrons in Atoms Principles of electromagnetic radiation led to Bohr’s model of the atom. Electron location is described using.
Physics and the Quantum Mechanical Model Notes. Light and the Atomic Spectrum Light is composed of waves at different wavelengths The wave is composed.
1 The Quantum Mechanical Model of the Atom Chapter 7.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 - Electrons. Properties of Light What is light? A form of electromagnetic radiation: energy that exhibits wavelike behavior as it travels through.
Arrangement of Electrons in Atoms Chapter 4. Section 4.1 Wave-Particle Nature of Light 1. Electromagnetic Radiation -a form of energy that exhibits wavelike.
Electrons in Atoms The Development of a New Atomic Model.
Light is an electromagnetic wave EM wave- a form of energy that exhibits wavelike behavior as it travels through space All the forms of EM radiation form.
Mullis Chemistry Holt Ch.41 Arrangement of Electrons in Atoms Principles of electromagnetic radiation led to Bohr’s model of the atom. Electron location.
Electrons in atoms Chapter5 Waves Light travels as both Waves and Packets of energy. Light is a form of Electromagnetic Radiation. –EM Radiation has.
Light is an electromagnetic wave EM wave- a form of energy that exhibits wavelike behavior as it travels through space.
Modern Chemistry Chapter 4 Arrangement of Electrons in Atoms Sections 1-3 The Development of a New Atomic Model The Quantum Model of the Atom Electron.
Development of a New Atomic Model Properties of Light.
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
LIGHT and QUANTIZED ENERGY. Much of our understanding of the electronic structure of atoms has come from studying how substances absorb or emit light.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Chapter 5 “Electrons in Atoms”. Section 5.3 Physics and the Quantum Mechanical Model l OBJECTIVES: Describe the relationship between the wavelength and.
The Development of A New Atomic Model
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Bohr’s Model Rutherford’s model didn’t explain the arrangement of electrons around the nucleus.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
Chemistry I Chapter 4 Arrangement of Electrons. Electromagnetic Radiation Energy that exhibits wavelike behavior and travels through space Moves at the.
Light, Quantitized Energy & Quantum Theory CVHS Chemistry Ch 5.1 & 5.2.
Section 1 The Development of a New Atomic Model Objectives Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic.
Chapter 5.  Energy transmitted from one place to another by light in the form of waves  3 properties of a wave;  Wavelength  Frequency  Speed.
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
CHAPTER 4 CHEMISTRY. PROPERTIES OF LIGHT (P91-93) Originally thought to be a wave It is one type of ELECTROMAGNETIC RADIATION (exhibits wavelike behavior.
Properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5)
Arrangement of the Electrons Chapter 4
Electrons in Atoms Big Idea #2 Electrons and the Structure of Atoms
Electrons in Atoms Chapter 4.
Light, Electromagnetic Spectrum, & Atomic Spectra
Arrangement of the Electrons Chapter 4 (reg.)
Arrangement of electrons in atoms
Electronic Structure and Light
Electromagnetic Radiation
The Development of a New Atomic Model
Electron Configurations & Quantum Numbers
Electrons in Atoms Chapter 5.
Electrons in Atoms Chapter 5.
Properties of Light.
Arrangement of Electrons in Atoms
Presentation transcript:

Learning Target: Explain the electromagnetic spectrum. Learning Outcome: Be able to describe a wave in terms of frequency, wavelength, speed, and amplitude.

(Electron Configurations)

 Electromagnetic Radiation-form of energy that exhibits wave-like behavior as it travels through space.  Electromagnetic Spectrum-ordered arrangement by wavelength or frequency for all forms of electromagnetic radiation.

 Wavelength-lambda (λ) The distance between corresponding points on adjacent waves. Units: m, nm, cm, or Å  Frequency-nu (ν) The number of waves passing a given point in a definite amount of time. Units: hertz (Hz) or cycles/sec = 1/sec = sec -1

 c = λ∙ν  λ = wavelength (m)  ν = frequency (Hz)  c = speed of light= 3.0 x 10 8 m/sec (constant)  λ and ν are _______________ related.

Truck-mounted helium-neon laser produces red light whose wavelength (λ ) is 633 nanometers. Determine the frequency (v). *Remember that c=3.0x10 8 m/s. *Use the formula c= λ. v

c =3.0x10 8 m/s c= λ. v v=c / λ λ = 633nm= 6.33x10 -7 m v = 3.0x10 8 m/s = 0.47x s -1 = 4.7x10 14 s x10 -7 m Frequency = 4.7x10 14 Hz (cycles per second)

 When an electric field changes, so does the magnetic field. The changing magnetic field causes the electric field to change. When one field vibrates—so does the other.  RESULT-An electromagnetic wave.

Waves or Particles  Electromagnetic radiation has properties of waves but also can be thought of as a stream of particles.  Example: Light  Light as a wave: Light behaves as a transverse wave which we can filter using polarized lenses.  Light as particles (photons)  When directed at a substance light can knock electrons off of a substance (Photoelectric effect)

GIVEN: = ? = 434 nm = 4.34  m c = 3.00  10 8 m/s WORK : = c = 3.00  10 8 m/s 4.34  m = 6.91  Hz  EX: Find the frequency of a photon with a wavelength of 434 nm.

 Calculate the frequency for the yellow- orange light of sodium.  Calculate the frequency for violet light.

 E = h∙ν  E = energy (joule)  h = Planck’s constant = 6.63 x j∙sec  ν = frequency (Hz)  E and ν are ______________ related.  Calculate the energy for the yellow-orange light for sodium.  Calculate the energy for the violet light.

 2 problems that could not be explained if light only acted as a wave.  1.) Emission of Light by Hot bodies: Characteristic color given off as bodies are heated: red  yellow  white If light were a wave, energy would be given off continually in the infrared (IR) region of the spectrum.

 2.) Absorption of Light by Matter = Photoelectric Effect Light can only cause electrons to be ejected from a metallic surface if that light is at least a minimum threshold frequency. The intensity is not important. If light were only a wave intensity would be the determining factor, not the frequency!

 When an object loses energy, it doesn’t happen continuously but in small packages called “quanta”. “Quantum”-a definite amount of energy either lost or gained by an atom. “Photon”-a quantum of light or a particle of radiation.

 Excited State: Higher energy state than the atom normally exists in.  Ground State: Lowest energy state “happy state”  Line Spectrum: Discrete wavelengths of light emitted.  2 Types:  1.) Emission Spectrum: All wavelengths of light emitted by an atom.  2.) Absorption Spectrum: All wavelengths of light that are not absorbed by an atom. This is a continuous spectrum with wavelengths removed that are absorbed by the atom. These are shown as black lines for absorbed light.  Continuous Spectrum: All wavelengths of a region of the spectrum are represented (i.e. visible light)

 Hydrogen’s spectrum can be explained with the wave-particle theory of light.  Niel’s Bohr (1913)  1.) The electron travels in orbits (energy levels) around the nucleus.  2.) The orbits closest to the nucleus are lowest in energy, those further out are higher in energy.  3.) When energy is absorbed by the atom, the electron moves into a higher energy orbit. This energy is released when the electron falls back to a lower energy orbit. A photon of light is emitted.

 Lyman Series-electrons falling to the 1 st orbit, these are highest energy, _____ region.  Balmer Series- electrons falling to the 2 nd orbit, intermediate energy, _______ region.  Paschen Series-electrons falling to the 3 rd orbit, smallest energy, ______ region.

 E n = (-R H ) 1/n 2  E n = energy of an electron in an allowed orbit (n=1, n=2, n=3, etc.)  n = principal quantum number (1-7)  R H = Rydberg constant (2.18 x J)  When an electron jumps between energy levels: ΔE =E f – E i  By substitution: ΔE = hν = R H (1/n i 2 - 1/n f 2 )  When n f > n i then ΔE = (+)  When n f < n i then ΔE = (-)

 DeBroglie (1924)-Wave properties of the electron was observed from the diffraction pattern created by a stream of electrons.  Schrodinger (1926)-Developed an equation that correctly accounts for the wave property of the electron and all spectra of atoms. (very complex)

 Rather than orbits  we refer to orbitals. These are 3-dimensional regions of space where there is a high probability of locating the electron.  Heisenberg Uncertainty Principle-it is not possible to know the exact location and momentum (speed) of an electron at the same time.  Quantum Numbers-4 numbers that are used to identify the highest probability location for the electron.

 1.) Principal Quantum Number (n)  States the main energy level of the electron and also identifies the number of sublevels that are possible.  n=1, n=2, n=3, etc. to n=7  2.) Orbital Quantum Number  Identifies the shape of the orbital s (2 electrons) sphere1 orbital P (6 electrons) dumbbell3 orbitals d ( 10 electrons)4-4 leaf clovers & 1-dumbbell w/doughnut 5 orbitals f (14 electrons) very complex7 orbitals

 3.) Magnetic Quantum Number  Identifies the orientation in space (x, y, z) s  1 orientation p  3 orientations d  5 orientations f  7 orientations 4.) Spin Quantum Number States the spin of the electron. Each orbital can hold at most 2 electrons with opposite spin.

 1.) Principal Quantum Number (n)  States the main energy level of the electron and also identifies the number of sublevels that are possible.  n=1, n=2, n=3, etc. to n=7  2.) Azimuthal Quantum Number (l)  Values from 0 to n-1  Identifies the shape of the orbital l = 0ssphere1 orbital l = 1pdumbbell3 orbitals l = 2d 4-4 leaf clovers & 1-dumbbell w/doughnut 5 orbitals l = 3fvery complex7 orbitals

 3.) Magnetic Quantum Number (m l )  Values from –l  l  States the orientation in space (x, y, z) m l = 0sonly 1 orientation m l = -1, 0, +1p3 orientations m l = -2,-1,0,+1,+2d5 orientations m l = -3,-2,-1,0,+1+2,+3f7 orientations 4.) Spin Quantum Number (m s ) Values of +1/2 to -1/2 States the spin of the electron. Each orbital can hold at most 2 electrons with opposite spin.