Compound Angles Higher Maths.

Slides:



Advertisements
Similar presentations
Expressing asinx + bcosx in the forms
Advertisements

Trigonometric Identities
10.3 Double Angle and Half Angle Formulas
5.3 Apply the SINE and COSINE ratios 5.1, 5.3 HW Quiz: Wednesday Quiz: Friday Midterm: Oct. 6.
Trigonometry Revision θ Hypotenuse Opposite Adjacent O SH A CH O TA.
5.5 Solving Trigonometric Equations Example 1 A) Is a solution to ? B) Is a solution to cos x = sin 2x ?
1 Trigonometry Samuel Marateck © How some trigonometric identities presaged logarithms. We will be using complex numbers to simplify derivations.
Trigonometric equations
Trigonometry Equations
Solving Trigonometric Equations. First Degree Trigonometric Equations: These are equations where there is one kind of trig function in the equation and.
Solving Trig Equations
Chapter 7: Trigonometric Identities and Equations
Trigonometry 2 Aims Solve oblique triangles using sin & cos laws Objectives Calculate angles and lengths of oblique triangles. Calculate angles and lengths.
Right Triangle Trigonometry
Compound Angle Formulae 1. Addition Formulae Example:
Angles All about Sides Special Triangles Trig Ratios Solving Triangles
Lesson 24 – Double Angle & Half Angle Identities
Multiple Angle Formulas ES: Demonstrating understanding of concepts Warm-Up: Use a sum formula to rewrite sin(2x) in terms of just sin(x) & cos(x). Do.
Unit 2 Practice NAB Marking. 1. Show that (x + 1) is a factor of f(x) = x 3 + 2x 2 – 5x – 6, and express f(x) in fully factorised form. Outcome
Solving Trigonometric Equations Involving Multiple Angles 6.3 JMerrill, 2009.
Warm Up Sign Up. AccPreCalc Lesson 27 Essential Question: How are trigonometric equations solved? Standards: Prove and apply trigonometric identities.
Chapter 6 Trig 1060.
5.4 Sum and Difference Formulas In this section students will use sum and difference formulas to evaluate trigonometric functions, verify identities, and.
Barnett/Ziegler/Byleen Chapter 4
Sum and Difference Formulas New Identities. Cosine Formulas.
Using our work from the last few weeks,
Trigonometry Review Find sin(  /4) = cos(  /4) = tan(  /4) = Find sin(  /4) = cos(  /4) = tan(  /4) = csc(  /4) = sec(  /4) = cot(  /4) = csc(
5.3 Apply the SINE and COSINE ratios We will look at the TANGENT ratio tomorrow!
Section 5.2 Right Triangle Trigonometry. Function Values for Some Special Angles.
Use the formula Area = 1/2bcsinA Think about the yellow area What’s sin (α+β)?
Chapter 5 Analytic Trigonometry Sum & Difference Formulas Objectives:  Use sum and difference formulas to evaluate trigonometric functions, verify.
Solving Trigonometric Equations T, 11.0: Students demonstrate an understanding of half-angle and double- angle formulas for sines and cosines and can use.
Solving Equations Day 1 TS: Demonstrate understanding of concepts Warm Up: 1)Which are solutions to the equation 2sin 2 x – sinx – 1 = 0 a) π/2b) 7 π/6.
Specialist Maths Trigonometry Review Week 3. Addition Formulae.
7.5 Trig Equations. The Story! In the arctic, zoey wants to know how to dress! She has to dress differently depending on the temperature of the snow (degrees).
Trig Identities in Equations Brought to you by Seamus and Lucas.
MATHPOWER TM 12, WESTERN EDITION Chapter 5 Trigonometric Equations.
Sum and Difference Formulas...using the sum and difference formula to solve trigonometric equation.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #19 Ѳ = kπ#21t = kπ, kπ #23 x = π/2 + 2kπ#25x = π/6 + 2kπ, 5π/6 + 2kπ #27 x = ±1.05.
Warm-Up Write the sin, cos, and tan of angle A. A BC
T.3.3 – Trigonometric Identities – Double Angle Formulas
Aims: To know and learn 3 special trig identities. To be able to prove various trig identities To be able to solve angle problems by using Pythagoras.
Simplify the given expression: sec²t csct csc²t sect.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #9 tan x#31#32 #1x = 0.30, 2.84#2x = 0.72, 5.56 #3x = 0.98#4No Solution! #5x = π/6, 5π/6#6Ɵ = π/8.
HIGHER MATHEMATICS Unit 2 - Outcome 3 Trigonometry.
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
Applying Trigonometric Identities: Sum and Difference Formulas Big Idea: The following double angle trigonometric identities are printed in every Regents.
(a) To use the formulae sin (A B), cos (A B) and tan (A B). (b) To derive and use the double angle formulae (c) To derive and use the half angle formulae.
Lesson 44 – Trigonometric Identities – Double Angle Formulas
Trigonometry Lesson 3 Aims:
MATH 1330 Section 6.3.
MATH 1330 Section 6.3.
Graphs of Trigonometric Functions
Warm-up: Find sin(195o) HW : pg. 501(1 – 18).
1 step solns A Home End 1) Solve Sin x = 0.24
© T Madas.
Analytic Trigonometry
Analytic Trigonometry
Double angle formulae.
Examples Double Angle Formulas
MATH 1330 Section 6.3.
Trig. equations with graphs
3 step problems Home End 1) Solve 2Sin(x + 25) = 1.5
Ch 5.5.
Solving Trigonometric Equations
Warm-up 8/22 Verify that the equation is an identity.
Section 5 – Solving Trig Equations
Trigonometric Functions
Main Ideas of Hon PreCalc Ch. 5 Class 1
Presentation transcript:

Compound Angles Higher Maths

Compound Angles Click on an icon Trig Equations 1 Trig Equations 2 Ans Sin (A+B), Sin (A-B) Exact Values Cos (A+B) , Cos (A-B) Higher trig. questions Using the four formulae

Solve the following equations for 0 < q < 2 , q  R Trigonometric Equations 1 Solve the following equations for 0 < x < 360, x  R 1.      2sin 2x + 3cos x = 0 2.      3cos 2x - cos x + 1 = 0 3.      3cos 2x + cos x + 2 = 0 4.      2sin 2x = 3sin x 5.      3cos 2x = 2 + sin x 6.      10cos2 x + sin x - 7 = 0 7.      2cos 2x + cos x - 1 = 0 8.      6cos 2x - 5cos x + 4 = 0 9.      4cos 2x - 2sin x - 1 = 0 10.    5cos 2x + 7sin x + 7 = 0 Solve the following equations for 0 < q < 2 , q  R 11.      sin 2q - sin q = 0 12.      sin 2q + cos q = 0 13.      cos 2q + cos q = 0 14.      cos 2q + sin q = 0

Trig Equations 1 - Solutions. 1.      {90, 229, 270, 311} 2.      {48, 120 , 240, 312} 3.      {71,120 , 240 , 289} 4.      {0, 41 , 180 , 319} 5.      {19 , 161 , 210 , 330 } 6.      {37, 143, 210, 330} 7.      {41, 180, 319} 8.      {48, 104, 256, 312} 9.      {30, 150, 229, 311} 10.      {233, 307} 11.      {0, /3 ,  , 5/3 , 2} 12.      { /2 , 7/6 , 3 /2 , 11 /6} 13.      { /3, , 5 /3} 14.      { /2 , 7/6 , 11/6}

4cos2x + 13sinx – 9 = 0 12 3cos2x – 7cosx + 4 = 0 11 2sin2x = 3sinx 10 Trig. Equations 2 Use the formula Sin2x = 2sinxcosx , Cos2x = 2cos2x -1 = 1 – 2sin2x to solve the following equations, for 0 < x < 360, x  R 4cos2x + 13sinx – 9 = 0 12 3cos2x – 7cosx + 4 = 0 11 2sin2x = 3sinx 10 2cos2x – sinx + 1 = 0 9 2cos2x – 9cosx – 7 = 0 8 3sin2x = 5cosx 7 5cos2x + 11sinx – 8 = 0 6 cos2x + cosx = 0 5 sin2x = sinx 4 2cos2x + 4sinx + 1 = 0 3 3cos2x – 10cosx + 7 = 0 2 5sin2x = 7cosx 1

Trig Equations (2) - Solutions { 39°, 90°, 141°} 12 { 80°, 280°} 11 { 41°, 180°, 319°} 10 { 49°, 131°, 270°} 9 { 221°, 139°} 8 { 56°, 90°, 124°, 270°} 7 { 30°, 37°, 143°, 150°} 6 { 60°, 180°, 300°} 5 4 { 210°, 330°} 3 { 48°, 312°} 2 { 44°, 90°, 136°, 270°} 1 Solution Question

Trigonometric equations 3 Solve for 0 x 360o 1. 5cos2x + sinx – 2 = 0 2. 3cos2x – 2cosx + 3 = 0 3. 5sin2x = 7cosx 4. cos2x + 4sinx -1 = 0 5. 7sin2x = 13sinx 6. cos2x + sinx – 1 = 0 7. 3cos2x + sinx – 1 = 0 8. 2cos2x + cosx – 3 = 0 9. 3sin2x = sinx 10. 7cos2x -17cosx + 1 = 0 11. cos2x – 8cosx + 1 = 0 12. 4sin2x = 5cosx 13, 8cos2x + 38cosx + 29 = 0 14. 3cos2x – 11sinx – 8 = 0

Trig Equations 3 - Solutions 1. SS = {37,143,210,330} 2. SS = {71,90,270,289} 3. SS = {44,90,136,270} 4. SS = {0,180,360} 5. SS = {0,22,180,338,360} 6. SS = {0,30,150,180,360} 7. SS = {42,138,210,330} 8. SS = {0,360} 9. SS = {0,80,180,280,360} 10. SS = {107,253} 11. SS = {90,270} 12. SS = {39,90,141,270} 13. SS = {151,209} 14. SS = {236,270,304}

Continued on next slide

Continued on next slide

Continued on next slide

By writing 210 as 180 + 30 , find the exact value of sin210 Exact Values Worked example 1 By writing 210 as 180 + 30 , find the exact value of sin210 Solution 1 sin210 = sin(180 + 30) = sin180cos30 + cos180 sin30 = 0 . + (-1) . = - Worked example 2 By writing 315 as 360 - 45 , find the exact value of cos315 Solution 2 cos315 = cos(360 - 45) = cos360 cos45 + sin360 sin45 = 1 . + 0 . = Continued on next slide

Use the previous ideas to find the exact values of the following 1. sin 150 2. cos 225 3. sin 240 4. cos 300 5. sin 120 6. cos 135 7. sin 135 8. cos 210 9. sin 315

done the course work on trigonometry. Higher Trigonometry Questions This set of questions would be suitable as revision for pupils who have done the course work on trigonometry. 1. If A is acute and , find the exact values of sin2A and cos2A 2. If A is obtuse and , find the exact values of sin2A and cos2A. 3. If A and B are acute and , find the exact value of cos (A-B). 4. If A is acute and , find the exact value of cos2A. Continued on next slide

5. Solve the equations for 5sin2x = 7cosx 5cos2x – 7cosx + 6 = 0 4cos2x – 10sinx -7 = 0 4sin2x = 3sinx 8cos2x – 2cosx + 3 = 0 3cos2x + 7sinx – 5 = 0 6sin2x = 11sinx a) b) 2sin2x +sinx = 0 c) cos2x – 4cosx = 5 6. Solve for Continued on next slide

7. Find the exact value of sin45 + sin135 + sin225 8. Show that Show that sin(x+30) – cos(x+60) = 3sinx 10. Show that sin(x+60) – sin(x+120) = sinx 11. Prove that 12. Prove that (sinx + cosx)2 = 1 + sin2x 13. Prove that sin3xcosx + cos3xsinx = sin2x 14. By writing 3x as 2x + x show that sin3x = 3sinx – 4sin3x cos3x = 4cos3x – 3cosx Continued on next slide

Prove that (cosx + cosy)2 + (sinx + siny)2 = 2[1+cos(x+y)] 15. Using the fact that , show that Prove that (cosx + cosy)2 + (sinx + siny)2 = 2[1+cos(x+y)] 17. Work out the exact values of a) cos330 b) sin210 c) sin135 19. If sinx= and x is acute, find the exact values of a) sin2x b) cos2x c) sin4x 1 2 3 y x 20. Use the formula for sin (x+y) to show that x+y = 45. Continued on next slide

Find the exact value of sin (x+y). 21. Use the formula for cos (x+y) to show that cos (x+y) = 2 3 y x 22. If sin A = , sin B= , and A is obtuse and B is acute, find the exact values of a) sin2A b) cos(A-B) 23. Solve the equation sinxcos33 + cosxsin33 = 0.9 24. Simplify cos225 – sin225 25 Solve the equations a) 4sin2x = 5sinx b) cos2x + 6cosx + 5 = 0 26. The diagram shows two right angled triangles. Find the exact value of sin (x+y). 12 13 4