Lesson 7-2 Hard Trig Integrals. Strategies for Hard Trig Integrals ExpressionSubstitutionTrig Identity sin n x or cos n x, n is odd Keep one sin x or.

Slides:



Advertisements
Similar presentations
Trigonometric Equations
Advertisements

Lesson 7-1 Integration by Parts.
Trigonometric Identities
Trigonometry Review Find sin(  /4) = cos(  /4) = tan(  /4) = Find sin(  /4) = cos(  /4) = tan(  /4) = csc(  /4) = sec(  /4) = cot(  /4) = csc(
Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 8 Copyright © Cengage Learning. All rights reserved.
Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Copyright © Cengage Learning. All rights reserved.
7 TECHNIQUES OF INTEGRATION. 7.2 Trigonometric Integrals TECHNIQUES OF INTEGRATION In this section, we will learn: How to use trigonometric identities.
Write the following trigonometric expression in terms of sine and cosine, and then simplify: sin x cot x Select the correct answer:
An identity is an equation that is true for all defined values of a variable. We are going to use the identities that we have already established and establish.
7.2 Trigonometric Integrals
7.3 Trigonometric Functions of Angles. Angle in Standard Position Distance r from ( x, y ) to origin always (+) r ( x, y ) x y  y x.
Section 5.5.  In the previous sections, we used: a) The Fundamental Identities a)Sin²x + Cos²x = 1 b) Sum & Difference Formulas a)Cos (u – v) = Cos u.
5.3 Solving Trigonometric Equations. What are two values of x between 0 and When Cos x = ½ x = arccos ½.
7.1 – Basic Trigonometric Identities and Equations
Copyright © Cengage Learning. All rights reserved. 7 Techniques of Integration.
More Trigonometric Integrals Lesson Recall Basic Identities Pythagorean Identities Half-Angle Formulas These will be used to integrate powers of.
CHAPTER Continuity Integration by Parts The formula for integration by parts  f (x) g’(x) dx = f (x) g(x) -  g(x) f’(x) dx. Substitution Rule that.
Find the reference angle
Lesson 3-R Review of Differentiation Rules. Objectives Know Differentiation Rules.
Chapter 6 Trig 1060.
6.2: Right angle trigonometry
Sum and Difference Formulas New Identities. Cosine Formulas.
TOP 10 Missed Mid-Unit Quiz Questions. Use the given function values and trigonometric identities to find the indicated trig functions. Cot and Cos 1.Csc.
Odds and Even functions Evaluating trig functions Use a calculator to evaluate trig functions.
Tuesday 3/24. Warm Up Determine the six trigonometric ratios for the following triangle: y r x θ sin θ =csc θ = cos θ =sec θ = tan θ =cot θ = What if.
Lesson 7-4 Partial Fractions. Fractional Integral Types Type I – Improper: –Degree of numerator ≥ degree of denominator –Start with long division Type.
Basic Trigonometric Identities In this powerpoint, we will use trig identities to verify and prove equations.
5.3 Solving Trigonometric Equations
Substitution Rule. Basic Problems Example (1)
Lecture 12 – Trig Integrals Use u-sub, trig identities, and/or by parts. 1.
Unit 4: Trigonometry Minds On. Unit 4: Trigonometry Minds On AngleSinCosTan.
Trig Review. 1.Sketch the graph of f(x) = e x. 2.Sketch the graph of g(x) = ln x.
Pg. 362 Homework Pg. 362#56 – 60 Pg. 335#29 – 44, 49, 50 Memorize all identities and angles, etc!! #40
The General Power Formula Lesson Power Formula … Other Views.
SEC 8.2: TRIGONOMETRIC INTEGRALS
November 7, 2012 Verifying Trig Identities Homework questions HW 5.2: Pg. 387 #4-36, multiples of 4.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #19 Ѳ = kπ#21t = kπ, kπ #23 x = π/2 + 2kπ#25x = π/6 + 2kπ, 5π/6 + 2kπ #27 x = ±1.05.
4.4 – Trigonometric Functions of any angle. What can we infer?? *We remember that from circles anyway right??? So for any angle….
7.2 Trigonometric Integrals Tues Jan 12 Do Now Evaluate.
Trigonometric Integrals Lesson 8.3. Recall Basic Identities Pythagorean Identities Half-Angle Formulas These will be used to integrate powers of sin and.
Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 8 Copyright © Cengage Learning. All rights reserved.
DO NOW QUIZ Take 3 mins and review your Unit Circle.
Lesson 3-4 Derivatives of Trigonometric Functions.
Trigonometry Section 8.4 Simplify trigonometric expressions Reciprocal Relationships sin Θ = cos Θ = tan Θ = csc Θ = sec Θ = cot Θ = Ratio Relationships.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #9 tan x#31#32 #1x = 0.30, 2.84#2x = 0.72, 5.56 #3x = 0.98#4No Solution! #5x = π/6, 5π/6#6Ɵ = π/8.
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
Pythagorean Identities Unit 5F Day 2. Do Now Simplify the trigonometric expression: cot θ sin θ.
7-6 Solving Trigonometric Equations Finding what x equals.
Math III Accelerated Chapter 14 Trigonometric Graphs, Identities, and Equations 1.
Remember an identity is an equation that is true for all defined values of a variable. We are going to use the identities that we have already established.
Section 8.3 – Trigonometric Integrals
U-Substitution or The Chain Rule of Integration
Warm Up Use trigonometric identities to simplify: csc ∙tan
Integrals Involving Powers of Sine and Cosine
Section 5.1: Fundamental Identities
7.2 – Trigonometric Integrals
More Trigonometric Integrals
Integration.
The General Power Formula
One way to use identities is to simplify expressions involving trigonometric functions. Often a good strategy for doing this is to write all trig functions.
Homework Log Fri 4/22 Lesson 8 – 4 Learning Objective:
Using Fundamental Identities
Lesson 7-3 Trig Substitution.
Packet #25 Substitution and Integration by Parts (Again)
Multiple-Angle and Product-to-Sum Formulas (Section 5-5)
DAY 61 AGENDA: DG minutes.
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals
Verifying Trigonometric
Presentation transcript:

Lesson 7-2 Hard Trig Integrals

Strategies for Hard Trig Integrals ExpressionSubstitutionTrig Identity sin n x or cos n x, n is odd Keep one sin x or cos x or for du Convert remainder using Trig ID sin² x + cos² x = 1 sin n x or cos n x, n is even Use half angle formulas: sin² x = ½(1 – cos 2x) cos² x = ½(1 + cos 2x) sin m x cos n x, n or m is odd From odd power, keep one sin x or cos x, for du Use identities to substitute sin² x + cos² x = 1 sin m x cos n x, n & m are even Use half angle identities sin² x = ½(1 – cos 2x) cos² x = ½(1 + cos 2x) tan n x or cot n x From power pull out tan 2 x or cot 2 x and substitute using Trig ID cot 2 x = csc 2 x - 1 or tan 2 x = sec 2 x – 1 tan m x sec n x or cot m x csc n x, where n is even Pull out sec 2 x or csc 2 x for du Convert rest to tan or cot using the Trig ID sec² θ – 1 = tan² θ

Type I: sin n x or cos n x, n is odd Keep one sin x or cos x or for du Convert remainder with sin² x + cos² x = 1 Using U substitution to get power rules

7-2 Example 1 ∫ sin³ x dx Remove one sin x and combine with dx to form du Use Trig id: sin² x = 1 - cos² x to get the uⁿ du form = ∫ sin² x (sin x dx) = ∫ (1 – cos² x) (sin x dx) = ∫ sin x dx – ∫ cos² x (sin x dx) ) = ∫ sin x dx – (- 1) ∫ u² du = - cos x + ⅓ cos³ x + C Let u = cos x then du = -sin x

7-2 Example 2 ∫ cos 5 xdx let u = sin x and du = cos x dx mostly u n du form = ∫ cos 4 x (cos x dx) = ∫ (cos x dx) - 2 ∫ sin 2 x (cos x dx) + ∫ sin 4 x (cos x dx) = sin x – 2/3 sin 3 x + 1/5 sin 5 x + C = ∫ (1- sin 2 x) 2 (cos x dx) = ∫ (1- 2sin 2 x + sin 4 x) (cos x dx) Remove one cos x and combine with dx to form du Use Trig id: sin² x = 1 - cos² x to get the uⁿ du form

Type 2: sin n x or cos n x, n is even Use half angle formulas: –sin² x = ½(1 - cos 2x) –cos² x = ½(1 + cos 2x) Use form of  cos u du

7-2 Example 3 ∫ sin² x dx Use double angle formulas: Sin 2 x = ½(1 – cos 2x) Then use u = 2x and du = 2dx, so you need an extra ½ out front = ∫ ½ (1 - cos 2x) dx = ½ x - ½(½ sin 2x) + C = (¼) (2x – sin 2x) + C = ½ ∫ dx - ½ ∫ cos 2x dx

7-2 Example 4 ∫ cos 4 x dx = ∫ cos 4 x dx = ∫ ( ½(1 + cos 2x))² = ¼ ∫ (1 + 2cos 2x + cos 2 2x) dx = ¼( ∫ dx + 2 ∫ cos 2x dx + ∫ cos 2 2x dx) = ¼( ∫ dx + 2 ∫ cos 2x dx + ∫ ½(1 + cos 4x) dx) = ¼x + ¼sin 2x + (1/8)x + (1/8)(1/4) sin 4x + C = (3/8)x + ¼sin 2x + (1/32) sin 4x + C Use double angle formulas: cos 2 x = ½(1 + cos 2x) Twice on last term! Then use cos u du forms Note: Calculators will use other trig IDs to simplify into a different form = ¼ (sin x cos³ x) + (3/8) sin x cos x + 3/8(x) + C

Type 3: sin m x cos n x, n or m is odd From odd power, keep one sin x or cos x, for du Use identities to substitute –Convert remainder with sin² x + cos² x = 1 With U-substitutions, use power rule

7-2 Example 5 ∫ sin³ x cos 4 x dx = let u = cos x and du = -sin x dx ∫ (1 – cos² x) (cos 4 x) (sin x) dx = = -1 ∫ (cos 4 x) (-sin x) dx – (- ∫ (cos 6 x) (-sin x) dx) = (-1/5) u 5 + (1/7) u 7 + C = ( -1 /5) ( cos 5 x) + (1/7) (cos 7 x) + C = - ∫ u 4 du + ∫ u 6 du

Type IV: sin m x cos n x, n and m are even. Use half angle identities –sin² x = ½(1 - cos 2x) –cos² x = ½(1 + cos 2x)

7-2 Example 7 ∫ sin² x cos² x dx Use ½ angle formulas = ∫ (1/2) (1 – cos 2x) (1/2) (1 + cos 2x) dx Have to use ½ angle formula again = (1/4) ∫ (1 – cos 2 2x) dx = (1/4) x – (1/8) x + (1/8) ∫ cos 4x dx = (1/8) x + (1/32) sin 4x + C (not similar to calculator answer!) = (1/4) ∫ dx – (1/4) ∫ (1/2)(1 - cos 4x) dx

Type V: tan n x or cot n x From power pull out tan 2 x or cot 2 x and substitute cot 2 x = csc 2 x - 1 or tan 2 x = sec 2 x – 1 Sometimes it converts directly into u- substitution and the power rule; other times, this may have to be repeated several times

7-2 Example 7 ∫ cot 4 x dx Use trig id to convert cot 2 = ∫ cot 2 x (csc 2 x – 1) dx First  is a u-sub power rule and second, we reapply step 1 = ∫ cot 2 x (csc 2 x) dx – ∫ cot 2 x dx = - ∫ u² du - ∫ (csc 2 x – 1) dx = (-1/3)(cot 3 x) + cot x + x + C

7-2 Example 8 Use trig id to convert cot 2 = ∫ tan 3 x (sec 2 x – 1) dx First  is a u-sub power rule and second, we reapply step 1 = ∫ tan 3 x (sec 2 x) dx – ∫ tan 3 x dx = ∫ u 3 du - ∫ tan x(sec 2 x – 1) dx = ∫ u 3 du - ∫ u du + ∫ tan x dx = (1/4)(tan 4 x) - (1/2)tan 2 x - ln |cos x| + C ∫ tan 5 x dx

Type VI: tan m x sec n x or cot m x csc n x, where n is even Pull out sec 2 x or csc 2 x for du Convert rest using trig ids: –csc 2 x = cot 2 x + 1 –sec 2 x = tan 2 x + 1 Use u-substitution and power rules

7-2 Example 9 ∫ tan -3/2 x sec 4 x dx Keep a sec 2 for du and convert other using trig id = ∫ (tan -3/2 x) (tan 2 + 1) (sec 2 x) dx = ∫ (tan 1/2 x + tan -3/2 ) (sec 2 x) dx = ∫ u 1/2 du + ∫ u -3/2 du = (2/3)u 3/2 – (2) u -1/2 + C = (2/3)tan 3/2 x – (2)tan -1/2 x + C

Trigonometric Reduction Formulas ExpressionReduction Formula ∫ sin n x dx 1 n – 1 = sin n-1 x cos x sin n-2 x dx n n ∫ cos n x dx 1 n – 1 = --- cos n-1 x sin x cos n-2 x dx n n ∫ tan n x dx 1 = tan n-1 x - tan n-2 x dx n - 1 ∫ sec n x dx 1 n - 2 = sec n-2 x tan x sec n-2 x dx n - 1 n - 1 ∫ ∫ ∫ ∫ Remember the following integrals: (when n=1 in the above) ∫ tan x dx = ln |sec x| + C ∫ sec x dx = ln |sec x + tan x| + C

7-2 Example 10 ∫ sin² x dx Using reduction formulas = -(1/2) sin x cos x + (1/2) ∫ dx = = (-1/2) sin x cos x + (1/2) x + C Use your calculator to check. Calculator uses the reduction formulas.

7-2 Example 11 Use trig reduction formula = (1/5-1)tan 5-1 x + ∫ tan 5-2 x dx Use trig reduction formula again = (1/4) tan 4 x + ∫ tan 3 x dx ∫ tan 5 x dx = (1/4) tan 4 x + (1/3-1)tan 3-1 x + ∫ tan 3-2 x dx = (1/4) tan 4 x + (1/2)tan 2 x + ∫ tan x dx = (1/4) tan 4 x + (1/2)tan 2 x + ln|sec x| + C

Summary & Homework Summary: –Hard Trig integrals can be solved Homework: –pg , Day 1: 1, 2, 5, 9, 10 Day 2: 3, 7, 11, 14, 17