Mathematics 2 Module 4 Cyclic Functions Lecture 4 Compounding the Problem
Angle Formulae In this lecture we treat sine, cosine & tangent as mathematical functions which have relationships with each other. These are expressed as various formulae. It is important that you UNDERSTAND this work, but not that you can reproduce it. We would like you to be able to USE the formulae when needed. We want you to become familiar with using cyclic functions in algebraic expressions.
f(x) = sin x g(x) = A + sin x Vertical shift of A h(x) = sin(x + A) Horizontal shift of –A j(x) = sin (Ax) Horizontal squish A times k(x) = Asin x Vertical stretch A times m(x) = n(x) sin x Outline shape n(x)
Post-Lecture Exercise f(x) = sin (–x) f(x) = cos (–x)
Post-Lecture Exercise f(x) = 3sin (2x)f(x) = 2cos ( x / 2 ) f(x) = 2 + sin( x / 3 )
Post-Lecture Exercise 3.T(t) = sin(πt/8) a)38.6 is the normal temperature b) sin(πt/8) = 40 3sin(πt/8) = 1.4 sin(πt/8) = 1.4/3 = πt/8 = sin -1 (0.467) = t = 0.486*8/π = after about 1 and a quarter days. 4.Maximum is where sine is minimum i.e. when D = = 10metres
Lecture 4/4 Administration Last Lecture Distributive Functions Compound Angle Formulae Double Angle Formulae Sum and Product Formulae Summary
The Distributive Law 2(a + b) = 2a + 2b (a + b) 2 ≠ a 2 + b 2 = a 2 + 2ab + b 2 (a + b)/2 = a/2 + b/2 log(a + b) ≠ log a + log b = log a. log b sin (a + b) ≠ sin a + sin b = ????????????
The Unit Circle Again a sin a b sin b sin (a + b) < sin a + sin b
A Graphical Explanation ab(a+b) sin a sin b sin (a+b)
Lecture 4/4 Administration Last Lecture Distributive Functions Compound Angle Formulae Double Angle Formulae Sum & Product Formulae Summary
The Formula for 0 ≤ ø ≤ π / 2 a sin a b sin b y x z
Lecture 4/5 – Summary Compound Angle Formulae sin (A + B) = sinA.cosB + cosA.sinB sin (A – B) = sinA.cosB – cosA.sinB cos (A + B) = cosA.cosB – sinA.sinB cos (A – B) = cosA.cosB + sinA.sinB tan (A + B) = (tanA + tanB) 1 – tanA.tanB tan (A – B) = (tanA – tanB) 1 + tanA.tanB
Shelter from the Storm 7m 4m ø 4 cosø + 7sinø
Shelter from the Storm 7m 4m ø 7 µ 4 √65 4 cosø + 7sinø
Shelter from the Storm 7m 4m ø 4 cosø + 7sinø 7 µ 4 √65 sinµ = 4/√65 cosµ = 7/√65 4 = √65 sinµ 7 = √65 cosµ
Shelter from the Storm 7m 4m ø √65sinµ cosø + √65cosµsinø 7 µ 4 √65 sinµ = 4/√65 cosµ = 7/√65 4 = √65 sinµ 7 = √65 cosµ
Lecture 4/4 Administration Last Lecture Distributive Functions Compound Angle Formulae Double Angle Formula Sum & Product Formulae Summary
Double Angle Formulae sin (A + B) = sinA.cosB + cosA.sinB sin 2A = sinA.cosA + cosA.sinA = 2sinA cosA cos (A + B) = cosA.cosB – sinA.sinB cos 2A = cosA.cosA – sinA.sinA = cos 2 A – sin 2 A
Double Angle Formulae tan (A + B) = (tanA + tanB) 1 – tanA.tanB tan 2A = (tanA + tanA) 1 – tanA.tanA tan 2A = 2tanA 1 – tan 2 A
Lecture 4/4 Administration Last Lecture Distributive Functions Compound Angle Formulae Double Angle Formula Sum & Product Formulae Summary
The Octopus Large wheel, radius 6m, 8 second period. A = 6sin(2πx/8)
The Octopus Add a small wheel, radius 1.5m, 2s period. B = 1.5sin(2πx/2)
The Octopus Combine the two A + B = 6sin(2πx/8) + 1.5sin(2πx/2)
The Surf Decent surf has a height of 1.5m, 15s period. A = 1.5sin(2πx/15)
The Surf Add similar wave, say: 1m, 13s period. A + B = 1.5sin(2πx/15) + 1sin(2πx/13)
Adding Sine Functions sin(A+B) = sinAcosB + sinBcosA sin(A–B) = sinAcosB – sinBcosA Adding sin(A+B) + sin(A–B) = 2sinAcosB Rearranging sinAcosB = 1 / 2 [sin(A+B) + sin(A–B)]
Adding Sine Functions sinAcosB = 1 / 2 [sin(A+B) + sin(A–B)] Or, making A = (P+Q) / 2 and B = (P–Q) / 2 That is: A+B = 2P / 2 and A–B = 2Q / 2 1 / 2 [sin P + sin Q] = sin (P+Q) / 2 cos (P–Q) / 2 sin P + sin Q = 2 sin (P+Q) / 2 cos (P–Q) / 2
Lecture 4/4 Administration Last Lecture Distributive Functions Explanations of sin(A + B) Developing a Formula Further Formulae Summary
Lecture 4/4 – Summary Compounding the Problem Please KNOW THAT these formulae exist Please BE ABLE to follow the logic of their derivation and use Please PRACTISE the simple applications of the formulae as in the Post-Lecture exercises