The Distance and Midpoint Formulas p. 589. Geometry Review! What is the difference between the symbols AB and AB? Segment AB The length of Segment AB.

Slides:



Advertisements
Similar presentations
Unit 2 Find the Midpoint of a Line Segment Learning Goals: I can find the midpoint of a line segment by applying what I know about averages. I can solve.
Advertisements

Equations of parallel, perpendicular lines and perpendicular bisectors
9.1 Distance Formula & Midpoint Formula
10.2 Perpendicular Lines.
8.1 The Distance and Midpoint Formulas p. 490 What is the distance formula? How do you use the distance formula to classify a triangle? What is the midpoint.
10.1 The Distance and Midpoint Formulas What you should learn: Goal1 Goal2 Find the distance between two points and find the midpoint of the line segment.
12.8 The Distance Formula CORD Math Mrs. Spitz Spring 2007.
9.1 The Distance and Midpoint Formulas Algebra 2 Mrs. Spitz Spring 2007.
Warm up Write the equation of the line that: 1. Is parallel to y = 3 and goes through the point (2, -4) 2. Is perpendicular to y = 2x + 6 and goes through.
Chin-Sung Lin. Mr. Chin-Sung Lin  Distance Formula  Midpoint Formula  Slope Formula  Parallel Lines  Perpendicular Lines.
Section 8.3 Connections Between Algebra & Geometry
Warm Up Quiz 1. If the lengths of a right triangle are 5 and 10 what could the missing side be? [A] 75 [B] [C] 5 [D] If the hypotenuse of a
APPLYING POLYGON PROPERTIES TO COORDINATE GEOMETRY 6.7 – 6.8.
Distance and Midpoints
There’s a quiz on the table. Please take one and get started.
Use Midpoint and Distance Formulas
Geometry 3-6 Perpendicular Bisector A line or ray that cuts a line segment in half at a 90° angle. Perpendicular bisector Flipped fraction and opposite.
Perpendicular Bisector of a Line To find the equation of the perpendicular bisector of a line segment : 1. Find the midpoint 2. Find the slope of the given.
Midpoint and Distance Formulas Goal 1 Find the Midpoint of a Segment Goal 2 Find the Distance Between Two Points on a Coordinate Plane 12.6.
Geometry 13.5 The Midpoint Formula. The Midpoint Formula The midpoint of the segment that joins points (x 1,y 1 ) and (x 2,y 2 ) is the point (-4,2) (6,8)
1.4: equations of lines M(G&M)–10–9 Solves problems on and off the coordinate plane involving distance, midpoint, perpendicular and parallel lines, or.
Finding the Distance Between Two Points. Distance Formula Where does this formula come from and how do we use it? Consider the following example….
Triangles Review.
4-9 Isosceles and Equilateral Triangles
6.7 Polygons in the Coordinate Plane
Aim: How do we write equations of lines parallel or perpendicular to a given line? HW: Complete Worksheet Do Now: 1. Find the slope of the line given above.
Finding Equations of Lines If you know the slope and one point on a line you can use the point-slope form of a line to find the equation. If you know the.
Answers. Write the Formulas Slope Formula y₂-y₁ x₂-x₁ Point Slope Form y-y₁=m(x-x₁) Slope-intercept Form y=mx+b.
The Distance and Midpoint Formulas By: L. Keali’i Alicea.
10.1 – The Distance and Midpoint Formulas. Geometry Review What is the difference between the symbols AB and AB? segment from A to B The length of the.
Unit 1 Part 3 Segment Addition & Distance and Midpoint Formulas.
Your 1 st Geometry Test A step by step review of each question.
Aim: Review the distance and midpoint Do Now: in the triangle, find the lengths of two legs (-2,4) (3,6) (3,4)
Parallel and Perpendicular Lines
Geometry 5 March 2013 Place your Coordinate Geometry Project on your desk. Check answers- ½ are posted. Questions? Warm Up- Linear Equations Review Handout.
Slope: Define slope: Slope is positive.Slope is negative. No slope. Zero slope. Slopes of parallel lines are the same (=). Slopes of perpendicular lines.
Chapter 3 Lesson 6 Objective: Objective: To relate slope and perpendicular lines.
EQUATIONS OF LINES Parallel and Perpendicular Lines.
Warm Up # 4 Classify and name each angle. 1 ab c d.
Isosceles Triangles Theorems Theorem 8.12 – If two sides of a triangle are equal in measure, then the angles opposite those sides are equal in measure.
Warm-up 6 th Hour – Chapter 6 Test Scores: 100, 98, 95, 94, 92, 92, 88, 85, 83, 82, 72, 70, 67, 66, 62, 58, 7 MeanMedian ModeRange What happens to the.
Equation of Circle Midpoint and Endpoint Distance Slope
DAY 1 DISTANCE ON THE PLANE – PART I: DISTANCE FROM THE ORIGIN MPM 2D Coordinates and Geometry: Where Shapes Meet Symbols.
1 Find the equation of the line that goes through the points (-3, 6) and (-2, 4). y = -2x.
Notes Over 10.1 Finding the Distance Between Two Points Find the distance between the two points.
Midpoint and Distance Formulas
Use Medians and Altitudes
Perpendicular and Angle Bisectors
1-3 The Distance and Midpoint Formulas
Distance and Midpoint Formulas
9.1 Apply the Distance and Midpoint Formulas
Coordinate Geometry Read TOK p. 376
4-1 Triangles HONORS GEOMETRY.
1-6 Midpoint & Distance in the Coordinate Plane
Apply the Distance and Midpoint Formulas
Geometry.
Coordinate Proofs Lesson 6-2.
9.1 Apply the Distance and Midpoint Formulas
Apply the Distance and Midpoint Formulas
Classifying Triangles
The Distance and Midpoint Formulas
Geometry vocab. tHESE SHOULD also be DONE ON INDEX CARDS AND YOU SHOULD BE CONSTANTLY REVIEWING THEM AS WE GO!
Pythagorean Theorem.
Midpoint in the Coordinate Plane
Midpoint and Length Applications.
13.1 Cooridinate Geometry.
Write an equation in point-slope form for the perpendicular bisector of the segment with endpoints P(5, 2) and Q(1, –4). Step 1 Graph PQ. The perpendicular.
Find each segment length and determine if AB is congruent to CD
Functions Test Review.
Area and Perimeter Triangles.
Presentation transcript:

The Distance and Midpoint Formulas p. 589

Geometry Review! What is the difference between the symbols AB and AB? Segment AB The length of Segment AB

The Distance Formula The Distance d between the points (x 1,y 1 ) and (x 2,y 2 ) is :

Find the distance between the two points. (-2,5) and (3,-1) (-2,5) and (3,-1) Let (x 1,y 1 ) = (-2,5) and (x 2,y 2 ) = (3,-1) Let (x 1,y 1 ) = (-2,5) and (x 2,y 2 ) = (3,-1)

Classify the Triangle using the distance formula (as scalene, isosceles or equilateral) Because AB=BC the triangle is ISOSCELES

Relay Race: Distance Formula (-2, 8) & (6, 0) (-5, -8) & (1, 6) (-10, -15) & (12, 18) (-7, 2) & (-11/2, 4)

The Midpoint Formula The midpoint between the two points (x 1,y 1 ) and (x 2,y 2 ) is:

Find the midpoint of the segment whose endpoints are (6,-2) & (2,-9)

Write an equation in slope-intercept form for the perpendicular bisector of the segment whose endpoints are C(-1, 4) and D(5, 2). First, find the midpoint of CD. (2, 3) Now, find the slope of CD. m=-1/3 m=-1/3 * Since the line we want is perpendicular to the given segment, we will use the opposite reciprocal slope for our equation.

(y-y 1 )=m(x-x 1 ) or y=mx+b Use (x 1,y 1 )=(2, 3) and m=3 (y - 3)=3(x - 2) or 3=3(2)+b y- 3=3x - 6 or 3=6+b y=3x or 3 - 6=b y=3x - 3 or -3=b y=3x - 3 y=3x - 3

Relay Race: Midpoint (-2, 8) & (6, 0) (-5, -8) & (1, 6) (-10, -15) & (12, 18) (-7, 2) & (-11/2, 4)

Assignment Monday Night’s Homework Pg #17-31 (every other odd) #41, 42