5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation

Slides:



Advertisements
Similar presentations
Learning Targets Prove and apply theorems about perpendicular bisectors. Prove and apply theorems about angle bisectors.
Advertisements

GEOMETRY HELP Use the map of Washington, D.C. Describe the set of points that are equidistant from the Lincoln Memorial and the Capitol. The Converse of.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and slope of the segment (2, 8) and (–4,
Perpendicular bisector and angle bisector
5-2 Use Perpendicular Bisectors Warm Up Lesson Presentation
Perpendicular and Angle Bisectors
5-1 Perpendicular and Angle Bisectors Section 5.1
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Classifying Triangles
5-2 Perpendicular and Angle bisectors
1-5 Segment and Angles Bisectors Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Objectives Prove and apply theorems about perpendicular bisectors.
Holt McDougal Geometry 5-1 Perpendicular and Angle Bisectors 5-1 Perpendicular and Angle Bisectors Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Bisectors in Triangles Section 5-2. Perpendicular Bisector A perpendicular tells us two things – It creates a 90 angle with the segment it intersects.
5.2: Bisectors in Triangles Objectives: To use properties of perpendicular and angle bisectors.
Holt Geometry 4-3 Congruent Triangles 4-3 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Objectives Prove and apply theorems about perpendicular bisectors.
Perpendicular and angle bisectors
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-3 Use Angle Bisectors of Triangles Warm Up Lesson Presentation
Perpendicular and Angle Bisectors
Perpendicular and Angle Bisectors Warm Up Lesson Presentation
 .
Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Do Now 1. Find the value of n.
6.1 Perpendicular and Angle Bisectors
4-3 Congruent Triangles Holt Geometry Lesson Presentation.
6.1 Perpendicular and Angle Bisectors
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Pearson Unit 1 Topic 5: Relationships Within Triangles 5-3: Perpendicular and Angle Bisectors Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Section 5.1
6.1 Perpendicular and Angle Bisectors
6.1 Perpendicular and Angle Bisectors
Warm Up Construct each of the following. 1. A perpendicular bisector.
Vocabulary Equidistant Locus Perpendicular Bisector Angle Bisector
Class Greeting.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
F1b Angle Bisectors.
Congruent Triangles Warm Up Lesson Presentation Class Practice 5-2
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
OBJ: SWBAT prove and apply theorems about perpendicular bisectors.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Module 15: Lesson 5 Angle Bisectors of Triangles
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Objectives Prove and apply theorems about perpendicular bisectors.
Perpendicular and Angle Bisectors
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Objectives Prove and apply theorems about perpendicular bisectors and angle bisectors.
4-1 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Learning Targets I will prove and apply theorems about perpendicular bisectors. I will prove and apply theorems about angle bisectors.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Presentation transcript:

5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and slope of the segment (2, 8) and (–4, 6).

Objective SWBAT prove and apply theorems about angle bisectors. HW Page 304 {5, 6, 7, 8, 15, 17, 19, 31}

Vocabulary equidistant locus

When a point is the same distance from two or more objects, the point is said to be equidistant from the objects. Triangle congruence theorems can be used to prove theorems about equidistant points.

A locus is a set of points that satisfies a given condition A locus is a set of points that satisfies a given condition. The perpendicular bisector of a segment can be defined as the locus of points in a plane that are equidistant from the endpoints of the segment.

Remember that the distance between a point and a line is the length of the perpendicular segment from the point to the line.

Based on these theorems, an angle bisector can be defined as the locus of all points in the interior of the angle that are equidistant from the sides of the angle.

Example 2A: Applying the Angle Bisector Theorem Find the measure. BC BC = DC  Bisector Thm. BC = 7.2 Substitute 7.2 for DC.

Example 2B: Applying the Angle Bisector Theorem Find the measure. mEFH, given that mEFG = 50°. Since EH = GH, and , bisects EFG by the Converse of the Angle Bisector Theorem. Def. of  bisector Substitute 50° for mEFG.

Example 2C: Applying the Angle Bisector Theorem Find mMKL. , bisects JKL Since, JM = LM, and by the Converse of the Angle Bisector Theorem. mMKL = mJKM Def. of  bisector 3a + 20 = 2a + 26 Substitute the given values. a + 20 = 26 Subtract 2a from both sides. a = 6 Subtract 20 from both sides. So mMKL = [2(6) + 26]° = 38°

Check It Out! Example 2a Given that YW bisects XYZ and WZ = 3.05, find WX. WX = WZ  Bisector Thm. WX = 3.05 Substitute 3.05 for WZ. So WX = 3.05

Given that mWYZ = 63°, XW = 5.7, and ZW = 5.7, find mXYZ. Check It Out! Example 2b Given that mWYZ = 63°, XW = 5.7, and ZW = 5.7, find mXYZ. mWYZ + mWYX = mXYZ  Bisector Thm. mWYZ = mWYX Substitute m WYZ for mWYX . mWYZ + mWYZ = mXYZ 2mWYZ = mXYZ Simplify. 2(63°) = mXYZ Substitute 63° for mWYZ . 126° = mXYZ Simplfiy .

Example 3: Application John wants to hang a spotlight along the back of a display case. Wires AD and CD are the same length, and A and C are equidistant from B. How do the wires keep the spotlight centered? It is given that . So D is on the perpendicular bisector of by the Converse of the Angle Bisector Theorem. Since B is the midpoint of , is the perpendicular bisector of . Therefore the spotlight remains centered under the mounting.

Check It Out! Example 3 S is equidistant from each pair of suspension lines. What can you conclude about QS? QS bisects  PQR.

Lesson Quiz: Part I Use the diagram for Items 1–2. 1. Given that mABD = 16°, find mABC. 2. Given that mABD = (2x + 12)° and mCBD = (6x – 18)°, find mABC. 32° 54° Use the diagram for Items 3–4. 3. Given that FH is the perpendicular bisector of EG, EF = 4y – 3, and FG = 6y – 37, find FG. 4. Given that EF = 10.6, EH = 4.3, and FG = 10.6, find EG. 65 8.6

Lesson Quiz: Part II 5. Write an equation in point-slope form for the perpendicular bisector of the segment with endpoints X(7, 9) and Y(–3, 5) .