Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.

Slides:



Advertisements
Similar presentations
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Advertisements

Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
Black Hole Fueling Image from ESO. Accretion to Supermassive Black Hole a: Ho, Filippenko & Sargent 1997a 10^6Mo 10^8 yr.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Spitzer Reveals Activities of Supermassive Black Holes in Elliptical Galaxies Qiusheng Gu Nanjing University in collaboration with J.-S. Huang (CfA), G.
AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Accretion and ejection in AGN, Como,
 High luminosity from the galactic central region L bol ~ erg/s  High X-ray luminosity  Supermassive black hole at the center of the galaxy.
Imaging Arp 220 in CO 6-5 and dust at 100 pc resolution with ALMA C. Wilson, (McMaster); N. Rangwala, J. Glenn, P. Maloney, J. R. Kamenetzky (Colorado);
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
CO J =1-0 + J =3-2 map (Oka+ 1999, 2007) Galactic Center Kunihiko Tanaka (1), Tomoharu Oka (1), Shinji Matsumura (1), Kazuhisa Kamegai (2), Makoto Nagai.
Molecular Hydrogen in the outer filaments surrounding NGC 1275 Nina Hatch CS Crawford, RM Johnstone, AC Fabian IOA, Cambridge.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
The Narrow-Line Region and Ionization Cone Lei Xu.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Quasar & Black Hole Science for GSMT Central question: Why do quasars evolve?
AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
The Spitzer View of Jet-ISM Interactions Patrick Ogle Ski Antonucci, Phil Appleton, David Whysong, & Christian Leipski.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
Figure 2: H  emission from NGC 1569 (Hunter et al. 1993). Note the numerous filaments extending far into the halo and the prominent H  arm in the west.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
1 ALMA Science Results ALMA Detects Ethyl Cyanide on Titan ALMA detected C 2 H 5 CN in 27 rotational lines at 1.3mm – HC 3 N, CH 3 CN and CH 3 CCH simultaneously.
R. Meijerink, P. van der Werf, F. Israel and the HEXGAL team HERSCHEL OBSERVATIONS OF Edo Loenen, Leiden Observatory EXTRA GALACTIC STAR FORMATIONMESSIER.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
Starburst in NGC 6090 Junzhi Wang Purple mountain observatory Collaborators: Qizhou Zhang, Zhong Wang, Giovanni G. Fazio, Paul T. P. Ho (CFA) Yuefang Wu.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
A NEW INTERSTELLAR MODEL FOR HIGH-TEMPERATURE TIME-DEPENDENT KINETICS Nanase Harada Eric Herbst The Ohio State University June 24, 2006 International Symposium.
Radio Emission in Galaxies Jim Condon NRAO, Charlottesville.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
Jet Propulsion Laboratory
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
CO Spectral Line Energy Distributions in Orion Sources: Templates for Extragalactic Observations Nick Indriolo & Ted Bergin University of Michigan June.
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
Nearby mergers: ellipticals in formation? Thorsten Naab University Observatory, Munich October 4th, 2006 From the Local Universe to the Red Sequence Space.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Science Operations & Data Systems Division Research & Scientific Support Department Page 1 XMM-Newton Feedback between circumnuclear gas and AGN: implications.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Molecular gas in cooling flows Interplay with AGN and starbursts
Excitation of H2 in NGC 253 Marissa Rosenberg
The nuclear starburst of M83 revealed with SINFONI
Observing Molecules in the EoR
Presentation transcript:

der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999

Molecular hydrogen emission in star forming galaxies2 H 2 emission as a diagnostic ä H 2 rotational lines: ä H 2 vibrational lines:  cf. CO J=1 - 0: T: few hundred K n > 10 2 cm -3 T: few thousand K n > cm -3 T: few tens of K n > 10 2 cm -3

Molecular hydrogen emission in star forming galaxies3 H 2 emission lines trace excitation ä General problem: what is the excitation mechanism? ä Shocks ä UV-pumping ä X-ray excitation ä …. H  m in NGC253 (Van der Werf & Moorwood, in preparation) 15” = 180 pc

Molecular hydrogen emission in star forming galaxies4 Two case studies ä Rotational H 2 lines in the disk of NGC891: ä Vibrational H 2 lines in the nuclear region of NGC6240: A new view of the warm molecular medium (Valentijn & Van der Werf 1999, ApJ 522, L29) A new diagnostic of the nuclei of gas-rich mergers (Van der Werf, Moorwood & Israel, in preparation)

Molecular hydrogen emission in star forming galaxies5 Dust in NGC891 SCUBA 850  m Sky survey Israel, Van der Werf & Tilanus 1999 A&A 344, L83

Molecular hydrogen emission in star forming galaxies6 H 2 emission in NGC891 ä ISO-SWS survey to 11 kpc from centre  28  m and 17  m detected at all positions ä 0th-order analysis: High-density limit Isothermal Ortho/para = 3 All three assumptions fail!

Molecular hydrogen emission in star forming galaxies7 Simple analysis of position 8kpc N Solution: abandon high-density assumption 0th order analysis gives: T=76K N(H 2 )=2.7  cm -2 CO gives: T~20 K N(H 2 )= cm -2

Molecular hydrogen emission in star forming galaxies8 Low-density solution Adopt density from CO: n(H 2 )~200 cm -3 T~130 K N(H 2 )= cm -2  H 2 J=3 (and CO J=2) subthermally populated subthermally populated Low-density PDRs  cf. [CII] Low-density PDRs  cf. [CII] Good throughout inner disk Good throughout inner disk In outer disk: 2 components? In outer disk: 2 components?

Molecular hydrogen emission in star forming galaxies9 Two-component solution Solution: ortho-para ratio ~ 1 Warm H 2 dominates S(1)Warm H 2 dominates S(1) Cool H 2 dominates S(0)Cool H 2 dominates S(0) T > 130 K T < 90 K N(H 2 ) > cm -2 M(H 2 ) > 10. M(HI) Problem: temperature balance; [CII] indicates 15  lower mass [CII] indicates 15  lower mass

Molecular hydrogen emission in star forming galaxies10 Vibrational H 2 emission in ULIGs Sub-arcsecond resolution near-IR H 2 imaging shows gas components between the nuclei of merging galaxies, e.g., NGC6240 ( Van der Werf et al ApJ 405, 522) ( Van der Werf et al ApJ 405, 522) Origin: dissipative components merge first ?Origin: dissipative components merge first ? Fate: nuclear starburst ? AGN ?Fate: nuclear starburst ? AGN ? Properties: M gas ~ M dyn ?Properties: M gas ~ M dyn ? Role of H 2 emission ?Role of H 2 emission ? Arp220 H S(1) (Van der Werf & Israel, in preparation) in preparation)

Molecular hydrogen emission in star forming galaxies11 H  m emission in NGC6240 H 2 emission peaks between the nuclei. between the nuclei. MorphologyMorphology SpectraSpectra } H 2 emission from cloud-cloud shocks cloud-cloud shocks  H 2 emission powered by dissipation of mechanical energy in nuclear medium  H 2 emission measures inflow rate of molecular gas to centre of potential well K H S(1) 10” = 5 kpc

Molecular hydrogen emission in star forming galaxies12 H 2 vibrational spectrum in NGC6240 Vibrational lines: T~1900 KVibrational lines: T~1900 K Rotational lines: T~400 KRotational lines: T~400 K  Energy radiated by shocks: L rad ~ L  L rad ~ L  Energy dissipated by shocks: L dis ~ ½ M H 2 v 2 L dis ~ ½ M H 2 v 2. L rad = L dis v~280 km s -1    M H 2 ~ 260 M  yr -1.

Molecular hydrogen emission in star forming galaxies13 Fate of the infalling gas Southern nucleus: M H 2 ~ 50 M  yr -1Southern nucleus: M H 2 ~ 50 M  yr -1 Northern nucleus: M H 2 ~ 20 M  yr -1Northern nucleus: M H 2 ~ 20 M  yr -1 Central component: M H 2 ~ 190 M  yr -1Central component: M H 2 ~ 190 M  yr -1 Nuclei: total mass inflow rate 70 M  yr -1 total star formation rate 45 M  yr -1 total star formation rate 45 M  yr Central component: M H 2 ~ M  ~ 30% of M dyn M H 2 ~ M  ~ 30% of M dyn t acc ~ 10 7 yr t acc ~ 10 7 yr large shear prevents star formation large shear prevents star formation explosive nuclear starburst will result explosive nuclear starburst will result K H S(1) N

Molecular hydrogen emission in star forming galaxies14 A merger sequence? (counterrotating disks) Antennae NGC6240  Arp220 Arp220 SCUBA 850  m (Van der Werf & Moorwood, in preparation)

Molecular hydrogen emission in star forming galaxies15 Conclusions In disks of late-type galaxies, H 2 rotational lines traceIn disks of late-type galaxies, H 2 rotational lines trace extended low-density PDRs extended low-density PDRs In mergers, H 2 lines trace dissipation of mechanical energyIn mergers, H 2 lines trace dissipation of mechanical energy in the merging gas components in the merging gas components In both cases, H 2 lines provide unique diagnostics onceIn both cases, H 2 lines provide unique diagnostics once the excitation mechanism is understood the excitation mechanism is understood