copyright cmassengale

Slides:



Advertisements
Similar presentations
DNA and Replication.
Advertisements

1 DNA and Replication. 2 History of DNA Early scientists thought protein was the hereditary material –Protein is more complex than DNA –Proteins are composed.
1 DNA Replication copyright cmassengale. 2 Replication Facts DNA has to be copied before a cell dividesDNA has to be copied before a cell divides DNA.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
1 DNA and Replication copyright cmassengale. 2 Antiparallel Strands One strand of DNA goes from 5’ to 3’ (sugars) The other strand is opposite in direction.
1 Aim #16: How does a DNA molecule replicate itself?
1 History of DNA. 2 DNA Structure Rosalind Franklin took diffraction x-ray photographs of DNA crystals In the 1950’s, Watson & Crick built the first model.
History Of DNA and Replication
3.A.1 DNA and RNA Part II: Replication cases DNA, and in some cases RNA, is the primary source of heritable information. DNA, and in some cases RNA, is.
1 2 DNA DNA.DNA is often called the blueprint of life. In simple terms, DNA contains the instructions for making proteins within the cell.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
1 DNA and Replication ubyIRiN84 DNA replication…3 min. WATCH, LISTEN AND COMPREHEND!!!!!!!
1 Structure and Replication Of DNA, DNA damage & repair Dr. Madhumita Bhattacharjee Assiatant Professor Botany deptt. P.G.G.C.G. -11,Chandigarh.
1 DNA Replication copyright cmassengale. 2 Replication Facts DNA has to be copied before a cell dividesDNA has to be copied before a cell divides DNA.
copyright cmassengale
1 DNA and Replication 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA Replication. 2 Video 3 Replication Facts DNA has to be copied before a cell dividesDNA has to be copied before a cell divides DNA is copied during.
1 DNA and Replication. 2 DNA Structure 3 DNA Stands for Deoxyribonucleic acid nucleotidesMade up of subunits called nucleotides Nucleotide made of:Nucleotide.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA and Replication. SCI.9-12.B [Indicator] - Compare DNA and RNA in terms of structure, nucleotides, and base pairs. 2.
DNA and Replication 1. History of DNA 2  Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA 
1 DNA Structure and Replication. 2 DNA Two strands coiled called a double helix Sides made of a pentose sugar Deoxyribose bonded to phosphate (PO 4 )
Avery, McCarty, and MacLeod Experiment What were their conclusion? CarbohydratesLipidsProteinsRNADNA Mice were given deadly bacteria with enzymes that.
1 DNA Replication Preparing for mitosis or meiosis copyright cmassengale.
copyright cmassengale
1 DNA and Replication. 2 Chargaff’s Rule Adenine ThymineAdenine must pair with Thymine Guanine CytosineGuanine must pair with Cytosine The bases form.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
DNA. History of DNA Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins were composed of.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
1 History of DNA copyright cmassengale. 2 History of DNA Early scientists thought protein was the cell’s hereditary material because it was more complex.
DNA Replication - copying DNA molecule. Why does DNA need to copy? Every time a cell divides (mitosis), an EXACT copy of DNA must go into new cells! Growth.
1 DNA Structure copyright cmassengale. 2 DNA Nucleotide O=P-O OPhosphate Group Group N Nitrogenous base (A, G, C, or T) (A, G, C, or T) CH2 O C1C1 C4C4.
History of DNA. Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins were composed of 20.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
1 DNA and Replication copyright cmassengale. 2 History of DNA Early scientists thought protein was the cell’s hereditary material because it was more.
1 DNA Replication copyright cmassengale. 2 Replication Facts DNA has to be copied before a cell dividesDNA has to be copied before a cell divides DNA.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA Structure copyright cmassengale. 2 DNA Two strands coiled called a double helix Sides made of a pentose sugar Deoxyribose bonded to phosphate (PO.
1. RNA (RIBONUCLEIC ACID) Nucleic acid involved in the synthesis of proteins.
1 DNA and Replication. 2 Discovery of DNA Structure Erwin Chargaff showed the amounts of the four bases on DNA ( A,T,C,G) In a body or somatic cell: A.
1 DNA and Replication. 2 History of DNA 3 Transformation Fred Griffith worked with virulent S and nonvirulent R strain Pneumoccocus bacteria He found.
DNA REPLICATION. Replication Facts DNA has to be copied before a cell divides DNA has to be copied before a cell divides DNA is copied during the S or.
1 DNA History Pt. 2 copyright cmassengale. 2 History of DNA Early scientists thought protein was the cell’s hereditary material because it was more complex.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA and Replication. 2 History of DNA 3 Early scientists thought protein was the cell’s hereditary material because it was more complex than DNA Proteins.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
1 DNA and Replication copyright cmassengale. 2 History of DNA copyright cmassengale.
DNA Replication DNA → RNA → Protein replication
DNA Replication.
DNA and Replication.
copyright cmassengale
DNA and Replication.
DNA and Replication.
Role of DNA Chapter 9 Section 1 Part 3.
copyright cmassengale
DNA Replication.
copyright cmassengale
copyright cmassengale
copyright cmassengale
DNA vs RNA DNA 1- Deoxyribose sugar
DNA Replication Essential Question: How do enzymes help ensure DNA is copied correctly?
DNA and Replication.
DNA Replication Unit 6 Topic 2
DNA and Replication.
copyright cmassengale
Presentation transcript:

copyright cmassengale DNA Replication copyright cmassengale

Anti-Parallel Strands of DNA On the left is the DNA double helix. When the helix is unwound, a ladder configuration shows that the uprights are composed of sugar and phosphate molecules and the rungs are complementary bases. Notice that the bases in DNA pair in such a way that the phosphate-sugar groups are oriented in different directions. This means that the strands of DNA end up running antiparallel to one another, with the 3’ end of one strand opposite the 5’ end of the other strand.

copyright cmassengale Replication Facts DNA has to be copied exactly before a cell divides DNA is copied during the S or synthesis phase of interphase New cells will need identical DNA strands copyright cmassengale

Synthesis Phase (S phase) S phase during interphase of the cell cycle Nucleus of eukaryotes Mitosis -prophase -metaphase -anaphase -telophase G1 G2 S phase interphase DNA replication takes place in the S phase. copyright cmassengale

copyright cmassengale DNA Replication Begins at Origins of Replication Two strands open forming Replication Forks (Y-shaped region) New strands grow at the forks Replication Fork Parental DNA Molecule 3’ 5’ copyright cmassengale

copyright cmassengale DNA Replication As the 2 DNA strands open at the origin, Replication Bubbles form Prokaryotes (bacteria) have a single bubble Eukaryotic chromosomes have MANY bubbles Bubbles copyright cmassengale

Synthesis of the New DNA Strands The Leading Strand is synthesized as a single strand from the point of origin toward the opening replication fork RNA Primer DNA Polymerase Nucleotides 3’ 5’ copyright cmassengale

Synthesis of the New DNA Strands The Lagging Strand is synthesized discontinuously against overall direction of replication This strand is made in MANY short segments It is replicated from the replication fork toward the origin RNA Primer Leading Strand DNA Polymerase 5’ 3’ Lagging Strand 5’ 3’ copyright cmassengale

Lagging Strand Segments Okazaki Fragments - series of short segments on the lagging strand Must be joined together by an enzyme Lagging Strand RNA Primer DNA Polymerase 3’ 5’ Okazaki Fragment copyright cmassengale

Joining of Okazaki Fragments The enzyme Ligase joins the Okazaki fragments together to make one strand Lagging Strand Okazaki Fragment 2 DNA ligase Okazaki Fragment 1 5’ 3’ copyright cmassengale

Replication of Strands Replication Fork Point of Origin copyright cmassengale

copyright cmassengale Proofreading New DNA DNA polymerase initially makes about 1 in 10,000 base pairing errors Enzymes proofread and correct these mistakes The new error rate for DNA that has been proofread is 1 in 1 billion base pairing errors copyright cmassengale

Semiconservative Model of Replication New DNA consists of 1 PARENTAL (original) and 1 NEW strand of DNA DNA Template New DNA Parental DNA copyright cmassengale

copyright cmassengale DNA Damage & Repair Chemicals & ultraviolet radiation damage the DNA in our body cells Cells must continuously repair DAMAGED DNA Excision repair occurs when any of over 50 repair enzymes remove damaged parts of DNA DNA polymerase and DNA ligase replace and bond the new nucleotides together copyright cmassengale