Hardness of testing 3- colorability in bounded degree graphs Andrej Bogdanov Kenji Obata Luca Trevisan.

Slides:



Advertisements
Similar presentations
1 Property testing and learning on strings and trees Michel de Rougemont University Paris II & LRI Joint work with E. Fischer, Technion, F. Magniez, LRI.
Advertisements

Approximate Max-integral-flow/min-cut Theorems Kenji Obata UC Berkeley June 15, 2004.
Finding Cycles and Trees in Sublinear Time Oded Goldreich Weizmann Institute of Science Joint work with Artur Czumaj, Dana Ron, C. Seshadhri, Asaf Shapira,
P, NP, NP-Complete Problems
Property Testing of Data Dimensionality Robert Krauthgamer ICSI and UC Berkeley Joint work with Ori Sasson (Hebrew U.)
Property Testing and Communication Complexity Grigory Yaroslavtsev
Lower Bounds for Testing Properties of Functions on Hypergrids Grigory Yaroslavtsev Joint with: Eric Blais (MIT) Sofya Raskhodnikova.
Grigory Yaroslavtsev Joint work with Piotr Berman and Sofya Raskhodnikova.
Deterministic vs. Non-Deterministic Graph Property Testing Asaf Shapira Tel-Aviv University Joint work with Lior Gishboliner.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Property testing of Tree Regular Languages Frédéric Magniez, LRI, CNRS Michel de Rougemont, LRI, University Paris II.
A UNIFIED FRAMEWORK FOR TESTING LINEAR-INVARIANT PROPERTIES ARNAB BHATTACHARYYA CSAIL, MIT (Joint work with ELENA GRIGORESCU and ASAF SHAPIRA)
Umans Complexity Theory Lectures Lecture 2a: Reductions & Completeness.
Online Social Networks and Media. Graph partitioning The general problem – Input: a graph G=(V,E) edge (u,v) denotes similarity between u and v weighted.
Christian Sohler | Every Property of Hyperfinite Graphs is Testable Ilan Newman and Christian Sohler.
Artur Czumaj Dept of Computer Science & DIMAP University of Warwick Testing Expansion in Bounded Degree Graphs Joint work with Christian Sohler.
Inapproximability from different hardness assumptions Prahladh Harsha TIFR 2011 School on Approximability.
Asaf Shapira (Georgia Tech) Joint work with: Arnab Bhattacharyya (MIT) Elena Grigorescu (Georgia Tech) Prasad Raghavendra (Georgia Tech) 1 Testing Odd-Cycle.
Testing of ‘massively parametrized problems’ - Ilan Newman Haifa University Based on joint work with: Sourav Chakraborty, Eldar Fischer, Shirley Halevi,
Proximity Oblivious Testing Oded Goldreich Weizmann Institute of Science Joint work with Dana Ron.
Testing the Diameter of Graphs Michal Parnas Dana Ron.
Proximity Oblivious Testing Oded Goldreich Weizmann Institute of Science Joint work with Dana Ron.
Testing of Clustering Noga Alon, Seannie Dar Michal Parnas, Dana Ron.
Michael Bender - SUNY Stony Brook Dana Ron - Tel Aviv University Testing Acyclicity of Directed Graphs in Sublinear Time.
Testing Metric Properties Michal Parnas and Dana Ron.
On Proximity Oblivious Testing Oded Goldreich - Weizmann Institute of Science Dana Ron – Tel Aviv University.
On Testing Convexity and Submodularity Michal Parnas Dana Ron Ronitt Rubinfeld.
Yet another algorithm for dense max cut - go greedy Claire Mathieu Warren Schudy (presenting) Brown University Computer Science SODA 2008.
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.
1 Algorithmic Aspects in Property Testing of Dense Graphs Oded Goldreich – Weizmann Institute Dana Ron - Tel-Aviv University.
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint works with Mira Gonen and Oded Goldreich Dana Ron Tel-Aviv University.
Lower Bounds for Property Testing Luca Trevisan U C Berkeley.
Christian Sohler 1 University of Dortmund Testing Expansion in Bounded Degree Graphs Christian Sohler University of Dortmund (joint work with Artur Czumaj,
CS151 Complexity Theory Lecture 6 April 15, 2004.
Approximating the Distance to Properties in Bounded-Degree and Sparse Graphs Sharon Marko, Weizmann Institute Dana Ron, Tel Aviv University.
On Testing Computability by small Width OBDDs Oded Goldreich Weizmann Institute of Science.
Finding Cycles and Trees in Sublinear Time Oded Goldreich Weizmann Institute of Science Joint work with Artur Czumaj, Dana Ron, C. Seshadhri, Asaf Shapira,
Some 3CNF Properties are Hard to Test Eli Ben-Sasson Harvard & MIT Prahladh Harsha MIT Sofya Raskhodnikova MIT.
CSE 589 Applied Algorithms Spring Colorability Branch and Bound.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Approximating the MST Weight in Sublinear Time Bernard Chazelle (Princeton) Ronitt Rubinfeld (NEC) Luca Trevisan (U.C. Berkeley)
Complexity and Efficient Algorithms Group / Department of Computer Science Approximating Structural Properties of Graphs by Random Walks Christian Sohler.
1 Sublinear Algorithms Lecture 1 Sofya Raskhodnikova Penn State University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Lower Bounds for Property Testing Luca Trevisan U.C. Berkeley.
Property Testing: Sublinear-Time Approximate Decisions Oded Goldreich Weizmann Institute of Science Talk at CTW, July 2013.
Artur Czumaj DIMAP DIMAP (Centre for Discrete Maths and it Applications) Computer Science & Department of Computer Science University of Warwick Testing.
Data Reduction for Graph Coloring Problems Bart M. P. Jansen Joint work with Stefan Kratsch August 22 nd 2011, Oslo.
狄彥吾 (Yen-Wu Ti) 華夏技術學院資訊工程系 Property Testing on Combinatorial Objects.
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
On Sample Based Testers
Property Testing (a.k.a. Sublinear Algorithms )
Lower Bounds for Property Testing
On Testing Dynamic Environments
Approximating the MST Weight in Sublinear Time
Finding Cycles and Trees in Sublinear Time
Circuit Lower Bounds A combinatorial approach to P vs NP
From dense to sparse and back again: On testing graph properties (and some properties of Oded)
Speaker: Chuang-Chieh Lin National Chung Cheng University
Lecture 18: Uniformity Testing Monotonicity Testing
On Learning and Testing Dynamic Environments
Warren Center for Network and Data Sciences
CIS 700: “algorithms for Big Data”
NP-completeness The Chinese University of Hong Kong Fall 2008
Pan Peng (University of Vienna, Austria)
The Subgraph Testing Model
Every set in P is strongly testable under a suitable encoding
Ch09 _2 Approximation algorithm
Hamiltonicity below Dirac’s condition
Presentation transcript:

hardness of testing 3- colorability in bounded degree graphs Andrej Bogdanov Kenji Obata Luca Trevisan

testing sparse graph properties A property tester is an algorithm A input: adjacency list of bounded deg graph G if G satisfies property P, accept w.p. ¾ if G is -far from P, reject w.p. ¾ -far: must modify -fraction of adj. list What is the query complexity of A?

examples of sparse testers [Goldreich, Goldwasser, Ron] propertyalgorithmlower bound connectivity Õ(1/ ) is a forest Õ(1/ ) bipartiteness Õ( n poly(1/ )) ( n)

examples of sparse testers have one-sided error: if G satisfies property P, accept w.p. 1 propertyalgorithmlower bound connectivity Õ(1/ ) is a forest Õ(1/ ) bipartiteness Õ( n poly(1/ )) ( n)

testing vs. approximation Approximating 3-colorability: SDP finds 3-coloring good for 80% of edges NP-hard to go above 98% Implies conditional lower bound on query complexity for small

hardness of 3-colorability One-sided testers for 3-colorability: For any <, A must make (n) queries Optimal: Every G is close to 3- colorable Two sided testers: There exists an for which A must make (n) queries

other results With o(n) queries, it is impossible to Approximate Max 3SAT within 7/8 + Approximate Max Cut within 16/17 + etc. Håstad showed these are inapproximable in poly time unless P = NP

one-sided error lower bound Must see non 3-colorable subgraph to reject Claim. There exists a sparse G such that G is δ far from 3-colorable Every subgraph of size o(n) is 3- colorable Proof. G = O(1/δ 2 ) random perfect matchings

an explicit construction Efficiently construct sparse graph G such that G is far from 3-colorable Every subgraph of size o(n) is 3- colorable

an explicit construction Efficiently construct sparse CSP A such that A is far from satisfiable Every subinstance of A with o(n) clauses is satisfiable There is a local, apx preserving reduction from CSP A to graph G

an explicit construction CSP A: flow constraints on constant degree expander graph (Tseitin tautologies) x 34 + x 36 + x 39 = x 43 + x 63 + x small cuts are overloaded C V C

By expansion property, no cut (C, V C) with |C| n/2 is overloaded an explicit construction C V C

By expansion property, no cut (C, V C) with |C| n/2 is overloaded Flow on vertices in C = sat assignment for C an explicit construction C V C

two-sided error bound Construct two distributions for graph G: If G far, G is far from 3-colorable whp If G col, G is 3-colorable Restrictions on o(n) vertices look the same in far and col

two-sided error bound Two distributions for E3LIN2 instance A: If A far, A is ½ δ far from satisfiable If A sat, A is satisfiable Restrictions on o(n) equations look the same in far and sat Apply reduction from E3LIN2 to 3-coloring

two-sided error bound Claim. Can choose left hand side of A: Every x i appears in 3/δ 2 equations Every o(n) equations linearly independent Proof. Repeat 3/δ 2 times: choose n/3 disjoint random triples x i + x j + x k

two-sided error bound Distributions. Fix left hand side as in Claim x 1 + x 4 + x 8 = x 2 + x 5 + x 1 = x 2 + x 7 + x 6 = x 8 + x 3 + x 9 = A farA sat

two-sided error bound Distributions. Fix left hand side as in Claim A far: Choose right hand side at random x 1 + x 4 + x 8 = 0 x 2 + x 5 + x 1 = 1 x 2 + x 7 + x 6 = 1 x 8 + x 3 + x 9 = 1 x 1 + x 4 + x 8 = x 2 + x 5 + x 1 = x 2 + x 7 + x 6 = x 8 + x 3 + x 9 = A farA sat

two-sided error bound Distributions. Fix left hand side as in Claim A far: Choose right hand side at random A sat: Choose random satisfiable rhs x 1 + x 4 + x 8 = 0 x 2 + x 5 + x 1 = 1 x 2 + x 7 + x 6 = 1 x 8 + x 3 + x 9 = 1 x 1 + x 4 + x 8 = x 2 + x 5 + x 1 = x 2 + x 7 + x 6 = x 8 + x 3 + x 9 = A farA sat

two-sided error bound Distributions. Fix left hand side as in Claim A far: Choose right hand side at random A sat: Choose random satisfiable rhs x 1 + x 4 + x 8 = 0 x 2 + x 5 + x 1 = 1 x 2 + x 7 + x 6 = 1 x 8 + x 3 + x 9 = = = = = 1 A farA sat

two-sided error bound Distributions. Fix left hand side as in Claim A far: Choose right hand side at random A sat: Choose random satisfiable rhs x 1 + x 4 + x 8 = 0 x 2 + x 5 + x 1 = 1 x 2 + x 7 + x 6 = 1 x 8 + x 3 + x 9 = 1 A farA sat

two-sided error bound On any subset of o(n) equations A far: rhs uniform by construction A sat: rhs uniform by linear independence Instances look identical to any algorithm of query complexity o(n)

two-sided error bound With o(n) queries, cannot distinguish satisfiable vs. ½ δ far from satisfiable E3LIN instances By reduction, cannot distinguish 3- colorable vs. far from 3-colorable graphs

some open questions Conjecture. A two-sided tester for 3- colorability with error parameter δ must make (n) queries Conjecture. Approximating Max CUT within ½ + δ requires (n) queries SDP approximates Max CUT within 87%