Chpt.’s 9 and 10. Metabolism Is the sum of all the chemical reactions that take place in an organism –E.g. growth, movement, repair, response, reproduction.

Slides:



Advertisements
Similar presentations
ENERGY.
Advertisements

ENERGY.
Introduction to Metabolism Chapter 6. Metabolism - sum of organism’s chemical processes. Enzymes start processes. Catabolic pathways release energy (breaks.
Enzymes The purpose of an enzyme in a cell is to allow the cell to carry out chemical reactions very quickly.
Enzymes Review Day.
Enzymes.
Enzymes.
ENZYMES Enzymes are biological substances (proteins) that occur as catalyst and help complex reactions occur everywhere in life.
Chemical Reactions in Cells To keep your body alive, your cells undergo countless chemical reactions. – Many of these reactions are occurring 24/7. These.
Biology, 9th ed,Sylvia Mader
Pathway organisers The ushers of chemical reactions
1 Metabolism: the chemical reactions of a cell All organisms need two things with which to grow: –Raw materials (especially carbon atoms) –Energy. Types.
Chapter 9 Enzymes. Metabolism –The sum of all the chemical reactions that take place within an organism. e.g. growth, movement etc. Metabolism maintains.
Unit 4- Biochemistry, Energy, Enzymes
Leaving Certificate Biology Higher Level
Chemical Reactions Breaking of bonds forming of new ones. New combinations of atoms are produced forming new substances with new properties. Energy needs.
Cells at Work. 3.1 Enzymes make life possible Most reactions that take place in the cell are carried out with the help of enzymes. (Organic catalysts)
Chpt. 12: Respiration. Two types of respiration External Respiration Internal respiration -is the process by which - is the controlled organisms exchange.
ENZYMES and Activation Energy. What is Energy? Energy is the ability to cause matter to move or change. All life processes are driven by energy Where.
Cell processes Enzyme activity. Key terms Amino acids Protein Enzyme Catalyst Metabolism Anabolism Catabolism Active site Substrate Lock-and-key model.
Chapter 8 Metabolism: Energy and Enzymes Energy is the capacity to do work; cells must continually use energy to do biological work. Kinetic Energy is.
Chapter 6 Energy and Metabolism. Energy: The capacity to do work – any change in the state of motion or matter Measured as heat energy Unit is the kilocalorie.
Chemical Reactions and Enzymes Chapter 8: An Introduction to Metabolism.
Metabolism and Enzymes. Metabolism- the total of all chemical reactions done in an organism to store or release energy. (the number of molecules built.
NOTES: 2.4 – Chemical Reactions and Enzymes
IB Biology HL 1 Mrs. Peters Fall 2014
Mader: Biology 8 th Ed. Metabolism: Energy and Enzymes Chapter 6.
C HAPTER 6 W ARM -U P 1. Define metabolism. 2. List 3 forms of energy. 3. Where does the energy available for nearly all living things on earth come from?
Cellular Energetics I.Energy, ATP and Enzymes A. Cell Energy 1. Introduction a. Energy is the ability to produce a change in the state or motion of matter.
An Introduction to Metabolism. Metabolism is the totality of an organism’s chemical reactions ◦ Manage the materials and energy resources of a cell.
6-1 Chapter 6 Metabolism: Energy and Enzymes. 6-2 Cells and the Flow of Energy Energy is the ability to do work. Living things need to acquire energy;
Energy and Metabolism Adapted from: faculty.sgc.edu/asafer/BIOL1107/chapt06_lecture.ppt.
Ch 9 Metabolism 1. Syllabus – What do you need to know….. 1.Define the term: metabolism. 2.State that solar energy is source of energy on Earth. 3.State.
METABOLISM Chapter 8. Energy of Life  Metabolism is the combination of all the chemical reactions in an organism  Arises from interactions of molecules.
Role of ATP and NAD.
Role of ATP and NAD. H2.2.8 Syllabus Objectives Explain the role of ATP and describe how it is formed from ADP + P Explain the role of NADP+ in trapping.
Respiration.
Cell metabolism 1. Contents Metabolism Enzymes Role of enzymes in plants and animals metabolism Enzymes involved in chemical breakdown Experiments Immobilised.
Cell metabolism and Enzymes. Metabolism (all of the chemical reactions in a living thing) Anabolic reactions Catabolic reactions Small molecules are combined.
Metabolism Metabolism describes all the chemical reactions in our bodies e.g. growth, response, movement etc. Metabolism: is sum of all the chemical reactions.
Metabolism Chapter 06. Metabolism 2Outline Forms of Energy  Laws of Thermodynamics Metabolic Reactions  ATP Metabolic Pathways  Energy of Activation.
Chapter 8 notes An Introduction to Metabolism. Concept 8.1 Metabolism: the totality of an organism’s chemical reactions A metabolic pathway begins with.
CHAPTER 6 Energy and Metabolism 1. 2 Flow of Energy Thermodynamics –Branch of chemistry concerned with energy changes Cells are governed by the laws of.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings.
Chapter 6 Energy Flow in the Life of a Cell Chapter 6 Energy Flow in the Life of a Cell.
Photosynthesis Honours
Energy is the capacity to do work.
Enzymes.
Structure of Enzymes: All enzymes are tertiary globular proteins, where the protein chain is folded back on itself into a spherical or globular shape.
NOTES: 2.4 – Chemical Reactions and Enzymes
Enzymes.
Unit 2.5 Enzymes.
WORK.
Enzymes, Energy, & ATP.
Chapter 6 Cellular Respiration
Chapter 5 The Working Cell.
Chapter 8 Warm-Up Define the term “metabolism”.
Chapter 8 Warm-Up Define the term “metabolism”.
Chapter 8 Warm-Up Define the term “metabolism”.
Chemical Reactions A chemical reaction breaks down some substances and builds other substances 2H2 + O > 2H2O Chemical reactions can occur when.
Chemical Reactions A chemical reaction breaks down some substances and builds other substances 2H2 + O > 2H2O Chemical reactions can occur when.
Role of ATP and NADH.
An Introduction to Metabolism
Chapter 8 Warm-Up Define metabolism. List 3 forms of energy.
Chapter 10 Higher Level Enzymes and Energy Carriers
An Introduction to Metabolism
An Introduction to Metabolism
An Introduction to Metabolism
Unit 4: Cells and Energy.
Presentation transcript:

Chpt.’s 9 and 10

Metabolism Is the sum of all the chemical reactions that take place in an organism –E.g. growth, movement, repair, response, reproduction Cells need energy to maintain themselves Metabolism is how cells obtain and use energy

Energy can either be released or absorbed –*Catabolic reactions breakdown complex molecules to simpler forms. Release energy. E.g. respiration or digestion –*Anabolic reactions convert simple molecules into complex ones. Energy is consumed. E.g. photosynthesis or polypeptide formation Reactions take place in steps. These steps are carefully controlled by the cell. The most important controller of cellular reactions are enzymes

Sources of Energy Solar Energy Cellular Energy

Enzymes A catalyst is a substance that speeds up a reaction without being used up Enzymes are catalysts made of protein Enzymes are biological catalysts that speed up reactions without being used up

Proteins are formed by joining a sequence of amino acids The function of a protein is determined by »its amino acid sequence »its shape

Enzymes are folded into globular shapes The 3D shape of an enzyme means it will fit and react only with a substance that has a matching shape Anything that changes the shape of the enzyme will alter the efficiency of the enzyme »pH »temperature

Enzyme action Substrate – substance which an enzyme reacts with. Product – substance(s) the enzyme forms. Active Site – part of the enzyme that combines with the substrate. Enzymes have a specific shape which determines their function. Enzyme reactions are reversible. This means any enzyme can be anabolic or catabolic Naming Enzymes – add ase to name of their substrate Lipid (substrate) Lipase (enzyme)

Inhibitors chemicals that attach to an enzyme and destroy its shape i.e. denature enzyme Advantages – some insecticides, drugs and antibiotics act as inhibitors of enzymes not present in humans, therefore can act on bacteria etc. without harming humans e.g. Penicillin Disadvantages – many nerve gases are inhibitors that attach to enzymes involved in nerve impulse transmission e.g. cyanide – denatures enzyme involved in respiration.

The Role of Enzymes Catabolic and anabolic enzymes – see handout Factors affecting enzyme activity: All enzymes work best under ideal conditions – optimal conditions – any change in these conditions will slow down the rate of the reaction by changing the enzymes effectiveness. Will be investigating two of these conditions: - temperature - pH values

Temperature –Human enzymes work best at 37 o C –Plant enzymes work best at 20 – 30 o C At very low temps cells freeze and enzymes can not function At very hot temps enzymes lose their shape and can not function (denatured above 50 o C)

TEMPERATURE AND RATE OF ENZYME ACTION

pH pH scale 0 to 14 Enzymes work in a very narrow pH range Outside range activity falls rapidly Optimal pH for most enzymes is pH 7

acidneutralbase 0714

Temp and pH effect on activity

Immobilised Enzymes Bio-processing: is the use of enzyme controlled reactions to produce a product Traditionally micro-organisms such as bacteria and yeast were used but since the 1900’s and especially since the 1950’s enzymes are being used. Bio-processing can be used to produce a vast range of products such as cheeses, beer, antibiotics, vaccines, methane gas, food flavours, vitamins and perfumes

Immobilised Enzymes If enzymes are used freely dissolved in a vessel it can be very wasteful as they are lost at the end of the process. To prevent this problem enzymes are often immobilised or fixed. This means they are attached to each other or an inert substance and can be used repeatedly i.e. Immobilised enzymes.

How to Immobilise Enzymes Physical methods: Adsorption: where enzymes are physically attached to inactive supports such as glass beads or cellulose particles. Trapped in a gel: sodium alginate is commonly used. This allows substrates in and products out but prevents the enzyme from leaving the gel. Enclosed by a membrane: when enzymes are kept within a membrane.

How to immobilise enzymes Chemical Methods : Bonded to a support enzymes chemically bonded to a support such as glass beads or ceramics. Bonded to each other enzymes are chemically bonded to each other.

Enzyme bonded to a support

Advantages of Immobilised Enzymes Efficiency of enzyme is not affected. Immobilised enzymes can be easily recovered from the product so you can get a pure sample of product easily. Immobilised enzymes can be reused this cuts costs. Enzymes frequently become more stable when immobilised.

Uses of Immobilised Enzymes Immobilised glucose isomerase converts glucose to fructose which is used to sweeten drinks. Lactase converts lactose to sweeter sugars glucose and galactose which are then used by food manufacturers. Penicillin acylase changes the structure of penicillin to make more antibiotics that will fight a wider range of bacteria.

The Active Site The Active site is the part of the enzyme that combines with the substrate.

The Active Site Contrary to belief the active site is not a rigid shape that is fixed to fit the substrate. When the substrate enters the active site it causes (or induces) it to change shape slightly. The enzyme then fits more precisely around the substrate this is known as the Induced Fit Model of enzyme action.

The Bean Bag Theory The Induced Fit Model can be compared to the way a bean bag will adapt to fit snugly around our body shape when we sit in it.

Mechanism of Enzyme Action - The Induced Fit Model 1.The substrate combines with the active site of the enzyme

2. The active site is induced or caused to change shape slightly. Active Site Substrate Enzyme

3. Substrate and enzyme form an enzyme substrate complex. The bonds in the substrate are altered so that the substrate changes into the product(s). Enzyme Substrate complex Substrate changed to products which are released

4. The products leave the active site. The active site returns to its original shape and is ready for a new substrate molecule. Active Site New Substrate Enzyme Products

Induced fit theory

Denaturation When most proteins are heated above 40 ⁰ C or treated with certain chemicals or radiation they will gradually lose their 3 dimensional shape. This means enzymes will not be able to form the enzyme substrate complex. Denaturation: occurs when the shape of an enzyme is changed and it loses its biological activity. Example: white of an egg is denatured when an egg is boiled.

Energy Carriers Energy is essential for cell metabolism e.g.: - Photosynthesis – energy in sunlight is used to make food. - Respiration – food is broken down to release energy. ATP, NADP+ and NAD+ play a vital role in trapping and transferring energy in cellular activities.

ADP and ATP ADP: ADP is an abbreviation for Adenosine Diphosphate this is a molecule found in the cells of all organisms. It is made of the base adenine, a 5 carbon sugar called ribose and 2 phosphate groups ADP is a low energy molecule AdenineRibosePP Adenosine Diphosphate Unstable Bond

ADP and ATP ATP: If another phosphate is added to ADP it forms ATP (Adenosine Triphosphate) Extra energy is also added as there is an extra bond between the last two phosphate groups. Addition of a phosphate group like this is called: Phosphorylation ATP is rich in energy and stores this energy carrying it around in the cell i.e. Energy Carrier. AdenineRibosePPP Unstable Bond

ATP cannot store energy for very long it breaks down releasing energy and converting back to ADP. Energy released is used to carry out most of the reactions in cells. Most cells release energy from ATP 10 million times every second! ADP and ATP ATP:

NADP + and NADPH NADP + : NADP + is a low energy molecule involved in photosynthesis. NADP + can combine with 2 high energy electrons and a proton (Hydrogen ion H + ) to form NADPH. NADP electrons + H + NADPH (LOW ENERGY) (HIGH ENERGY) (HIGH ENERGY) Addition of electrons like this is called - Reduction NADPH is a very high energy molecule. It’s energy is used to form glucose in photosynthesis.

NADP + and NADPH NADPH: NADPH releases energy, in the form of two high – energy electrons, and a proton when broken down into NADP +. NADPH NADP electrons + H + (HIGH ENERGY) (LOW ENERGY) (HIGH ENERGY)

NAD + and NADH NAD + is used in respiration It can combine with 2 high energy electrons and a proton to form NADH which is very high in energy. Remember P for photosynthesis, NADP + is used in photosynthesis NAD + in respiration.