Using IMAGE Data for Space Weather J. L. Green, S. F. Fung, R. Burley Goddard Space Flight Center J. L. Burch Southwest Research Institute W. W. L. Taylor Raytheon STX Corporation Space Weather Workshop NOAA Space Environment Center, Boulder, Colorado February 5-6, 1998
Abstract
Outline Team, mission, and instruments Data system and data products Summary
IMAGE Team Members Principal investigator: Dr. James L. Burch, SwRI U.S. Co-Investigators: –Prof. K. C. Hsieh & Dr. B. R. Sandel, University of Arizona –Dr. J. L. Green & Dr. T. E. Moore, Goddard Space Flight Center –Dr. S. A. Fuselier, Lockheed Palo Alto Research Laboratory –Drs. S. B. Mende, University of California, Berkeley –Dr. D. L. Gallagher, Marshall Space Flight Center –Prof. D. C. Hamilton, University of Maryland –Prof. B. W. Reinisch, University of Massachusetts, Lowell –Dr. W. W. L. Taylor, Raytheon STX Corporation –Prof. P. H. Reiff, Rice University –Drs. D. T. Young, C. J. Pollack, Southwest Research Institute –Dr. D. J. McComas, Los Alamos National Laboratory –Dr. D. G. Mitchell, Applied Physic Labortory, JHU
IMAGE Foreign Co-Is Foreign Co-Investigators –Dr. P. Wurz & Prof. P. Bochsler, University of Bern, Switzerland – Prof. J. S. Murphree, University of Calgary, Canada – Prof. T. Mukai, ISAS, Japan –Dr. M. Grande, Rutherford Appleton Laboratory, U.K. –Dr. C. Jamar, University of Liege, Belgium –Dr. J.-L. Bougeret, Observatoire de Paris, Meudon –Dr. H. Lauche, Max-Planck-Institut fur Aeronomie
Other Team Members Participating Scientist: –Dr. G. R. Wilson, University of Alabama Huntsville –Drs. A. L. Broadfoot & C. C. Curtis, University of Arizona –Dr. J. D. Perez, Auburn University –L. Cogger, University of Calgary, Canada –Drs. R. F. Benson & S. F. Fung, Goddard Space Flight Center –Dr. W. Calvert, University of Massachusetts, Lowell –Drs. A. G. Ghielmetti, Y. T. Chiu, M. Schulz, & E. G. Shelley, Lockheed –Dr. J. M. Quinn, University of New Hampshire –Dr. J. Spann, Marshall Space Flight Center –Prof. J.-C. Gerard, University of Liege, Belgium –Dr. G. R. Gladstone, Southwest Research Institute –Dr. D. L. Carpenter, Stanford University
Orbital Characteristics
IMAGE Instruments Neutral Atom Imagers –High Energy Neutral Atom (HENA) imagers –Medium Energy Neutral Atom (MENA) imagers –Low Energy Neutral Atom (LENA) imagers FUV Imagers –Spectrographic Imager (SI) –Geocorona (GEO) imager –Wideband Imaging Camera (WIC) EUV Imager –Extreme Ultra-Violet (EUV) imager Radio Sounder –Radio Plasma Imager (RPI)
Instrument Resolutions
IMAGE Telemetry Modes Store and forward telemetry mode –On-board storage and high rate dump through DSN twice/day (13 hour orbit) –SMOC receives Level-0 data and generates Level-1 (Browse Product) –SMOC being developed at Goddard Space Flight Center –Data products delivered to NSSDC for archiving and community distribution Real-Time mode –IMAGE broadcasts all telementry data in a real-time mode –Data can be received by anyone –Not routinely use by NASA Potential NOAA application –Receive real-time data –Generate “Space Weather” products –SMOC L0->L1 product generation software available for NOAA use
Potential IMAGE Space Weather Measurements
Simulated RPI Plasmagram RPI browse product data will produce plasmagrams Echoes shown in solid line, density features in dashed line. Derived Quantities from Plasmagrams include: –Distance to Magnetopause, Plasmapause, Polar Cusp (when observed) –Magnetospheric shape (with model), structure, gross irregularities –Storm conditions from a plasma/radio wave perspective
Radio Plasma Imager (RPI) RPI Observations –Remote sensing of electron density structure and magnetospheric boundary locations –Measure Requirements –Density range: **5 cm-3 (determine electron density from inner plasmasphere to magnetopause) –Spatial resolution: 500 km (resolve density structures at the magnetopause and plasmapause) Storm/substorm Observations –Image Time: 3 minute (resolve changes in boundary locations) generating 480 plasmagrams/day Quantity Simulated is an RPI “echo map” –Illustrates spatial location and intensity of return echoes (plotted as ray miss distance) –Doppler measurement (not shown) provides key information on boundary motion –Echoes from a large scale surface waves on the magnetopause
Spectrographic Imager (SI) SI Observations –Far ultraviolet imaging of the aurora –Image full Earth from apogee Measurement Requirement –FOV: 15°x 15° for aurora (image full Earth from apogee), –Spatial Resolution: 90 km –Spectral Resolution (top): Reject nm and select nm electron aurora emissions. –Spectral Resolution (bottom): nm Storm/substorm Observations –Image Time: 2 minutes generating 720 images/day Derived Quantities –Structure and intensity of the electron aurora (top) –Structure
Geocorona (GEO) Imager GEO Observations –Far ultraviolet imaging of the Earth’s Geocorona Measurement Requirement –FOV: 1° x 360° for Geocorona –Spatial Resolution: 90 km –Spectral Resolution:Lyman alpha nm Storm/substorm Observations –Image Time: 2 minutes generating 720 images/day Derived Quantities –Integrated line-of-sight density map of the Earth’s Geocorona Not shown in the IMAGE Movie –Image at left from Rairden et al., 1986
Extreme Ultra-Violet (EUV) imager EUV Observations –30.4 nm imaging of plasmasphere He+ column densities Measure Requirements –FOV: 90°x 90° (image plasmasphere from apogee) –Spatial Resolution: 0.1 Earth radius from apogee Storm/substorm Observations –Image Time: 10 minutes generating 144 images/day Derived Quantities: –Plasmaspheric density structure and plasmaspheric processes
Generation of Neutral Atoms
Simulation of Neutral Atoms
Summary IMAGE supports a full telemetry real-time down-link IMAGE will provide potentially valuable space weather data Level-1 and Browse data products in Common Data Format (CDF) –reuse of ISTP data display and analysis tools Data processing software available for NOAA Space weather products need more definition
BACKUP
Simulated RPI Plasmagram