R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
The Extraction of Higher Order Field Correlations from a First Order Interferometer Scott Shepard Louisiana Tech University.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
QEC’07-1 ASF 6/13/2015 MIT Lincoln Laboratory Channel-Adapted Quantum Error Correction Andrew Fletcher QEC ‘07 21 December 2007.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
Schrödinger’s Elephants & Quantum Slide Rules A.M. Zagoskin (FRS RIKEN & UBC) S. Savel’ev (FRS RIKEN & Loughborough U.) F. Nori (FRS RIKEN & U. of Michigan)
Anuj Dawar.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
CENTER FOR NONLINEAR AND COMPLEX SYSTEMS Giulio Casati - Istituto Nazionale di Fisica della Materia, and Universita’ dell’Insubria -National University.
QCMC’06 1 Joan Vaccaro Centre for Quantum Dynamics, Centre for Quantum Computer Technology Griffith University Brisbane Group theoretic formulation of.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
National Time Service Center. CAS Time Standard and Ensemble Pulsar Time Scale Ding Chen, George & Bill, Dick, PPTA team 2011 年 5 月 9 日, Beijing.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Quantum Steering in the Gaussian World Ioannis Kogias, A. Lee, S. Ragy and G. Adesso University of Nottingham To appear on arXiv: [quant-ph]
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
Pinning of Fermionic Occupation Numbers Christian Schilling ETH Zürich in collaboration with M.Christandl, D.Ebler, D.Gross Phys. Rev. Lett. 110,
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
Entanglement and Optimal Strings of Qubits for Memory Channels Laleh Memarzadeh Sharif University of Technology IICQI 7-10 Sept 2007 Kish Island.
Quantum metrology: dynamics vs. entanglement
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Quantum Boltzmann Machine
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Role of entanglement in extracting information on quantum processes
Improving Measurement Precision with Weak Measurements
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Detector of “Schrödinger’s Cat” States of Light
Quantum-limited measurements:
Quantum Optics and Macroscopic Quantum Measurement
The Grand Unified Theory of Quantum Metrology
The Grand Unified Theory of Quantum Metrology
Interference Two possible paths Probability Interference
Quantum computation using two component Bose-Einstein condensates
RF readout scheme to overcome the SQL
Advanced Optical Sensing
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Wave-Particle Duality and Simple Quantum Algorithms
Presentation transcript:

R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of Nottingham, United Kingdom Almost all decoherence models lead to shot noise scaling in quantum enhanced metrology the illusion of the Heisenberg scaling

LIGO - gravitational wave detector Michelson interferometer NIST - Cs fountain atomic clock Ramsey interferometry Precision limited by: Interferometry at its (classical) limits

N independent photons the best estimator: Estimator uncertainty: Standard Quantum Limit (Shot noise limit)

Entanglement enhanced precision Hong-Ou-Mandel interference &

NOON states Measuremnt State preparation Heisenberg limit Standard Quantum Limit Estimator Entanglement enhanced precision

What are the fundamental bounds in presence of decoherence?

General scheme in q. metrology Interferometer with losses (gravitational wave detectors) Qubit rotation + dephasing (atomic clock frequency callibrations) Input state of N particles phase shift + decoherence measurementestimation

Local approach using Fisher information Cramer-Rao bound: J. J.. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). Heisenberg scaling F – Fisher information (depends only on the input state) - Optimal N photon state (maximal F=N 2 ): No decoherence With decoherence - The output state is mixed - Fisher Information, difficult to calculate - Optimal states do not have simple structure RDD, et al. PRA 80, (2009), U. Dorner, et al., PRL. 102, (2009) - Asymptotic analytical lower bound: J. Kolodynski, RDD, PRA 82, (2010), S. Knysh, V. Smelyanskiy, G. Durkin PRA 83, (2011) B. M. Escher, et al. Nature Physics, 7, 406 (2011) (minimization over different Kraus representations) Heisenberg scaling is lost even for infinitesimal decoherence!!!

Maximal quantum enhancement

Can you prove simpler, more general and more intutive? Yes!!! Heisenberg scaling is lost even for infinitesimal decoherence!!!

Classical simulation of a quantum channel Convex set of quantum channels

Classical simulation of a quantum channel Convex set of quantum channels Parameter dependence moved to mixing probabilities Before:After: By Markov property…. K. Matsumoto, arXiv: (2010)

Classical simulation of N channels used in parallel

=

=

Precision bounds thanks to classical simulation Generlic decoherence model will manifest shot noise scaling To get the tighest bound we need to find the classical simulation with lowest F cl For unitary channelsHeisenberg scaling possible

The „Worst” classical simulation Quantum Fisher Information at a given depends only on The „worst” classical simulation: Works for non-extremal channels It is enough to analize,,local classical simulation’’: RDD, M. Guta, J. Kolodynski, arXiv: (2012)

Dephasing: derivation of the bound in 60 seconds! dephasing Choi-Jamiołkowski isomorphism (positivie operators correspond to physical maps) RDD, M. Guta, J. Kolodynski, arXiv: (2012)

Dephasing: derivation of the bound in 60 seconds! dephasing Choi-Jamiołkowski isomorphism (positivie operators correspond to physical maps) RDD, M. Guta, J. Kolodynski, arXiv: (2012)

Summary RDD, J. Kolodynski, M. Guta, arXiv: (2012) Heisenberg scaling is lost for a generic decoherence channel even for infinitesimal noise Simple bounds on precision can be derived using the classical simulation idea Channels for which classical simulation does not work ( extremal channels) have less Kraus operators, other methods easier to apply

Gallery of decoherence models