Commissioning Status of the Drift Chamber for a Di-Muon Spectrometer at the E906/SeaQuest Experiment at Fermilab 2011 年 10 月 24 日, GCOE 東工大 Florian.

Slides:



Advertisements
Similar presentations
Introduction of DAQ system: E906 as an example
Advertisements

Introduction of trigger system: E906 as an example Shiuan-Hal,Shiu 05/02/
Commissioning the PHENIX RPC Forward Trigger Upgrade Michael Daugherity Abilene Christian University for the PHENIX Collaboration.
Introduction SeaQuest: Fermilab Experiment E906 ➡ What will we learn? ➡ What will we measure? ➡ How will we measure it? Beyond SeaQuest ➡ Polarized Drell-Yan.
ACHIEVEMENTS OF THE TEVATRON FIXED-TARGET PROGRAM Heidi Schellman Northwestern University 1 6/11/12.
SeaQuest: Fermilab Experiment E906 ➡ Status and Plans Beyond SeaQuest ➡ Polarized Drell-Yan at Fermilab (E1027) Wolfgang Lorenzon (30-October-2013) PacSPIN2013.
Drell-Yan Experiments for determining Nucleon Partonic Structures Wen-Chen Chang Institute of Physics, Academia Sinica, Taiwan The International Symposium.
1 Partonic Substructure of Nucleons and Nuclei with Dimuon Production Partonic structures of the nucleons and nuclei with dimuon production –Overview and.
A new dark photon search P-Division Seminar Los Alamos National Laboratory Roy J. Holt Physics Division Argonne National Lab 26 February 2015.
F ERMILAB T EST B EAM F ACILITY Aria Soha March 17, 2011.
Calorimetry and Showers Learning Objectives Understand the basic operation of a calorimeter (Measure the energy of a particle, and in the process, destroy.
An accelerator beam of muon neutrinos is manufactured at the Fermi Laboratory in Illinois, USA. The neutrino beam spectrum is sampled by two detectors:
Introduction SeaQuest: Fermilab Experiment E906 ➡ Sea quarks in the proton ➡ Sea quarks in the nucleus ➡ other topics Beyond SeaQuest ➡ Polarized Drell-Yan.
The Old Man and the Sea Donald Geesaman Achievements and New Directions in Subatomic Physics 15 February 2010.
Roberto Francisco Pérez Benito On behalf the HERMES Collaboration European Graduate School Lecture Week on Hadron Physics Jyväskylä, Aug 25-29, 2008 HERMES.
E906 Physics in 5? minutes Paul E. Reimer 8 December 2006 d-bar/u-bar in the proton Nuclear effects in the sea quark distributions High-x valence distributions.
E906 Changes Paul E. Reimer 8 December 2006 Spectrometer Location Spectrometer’s 2 nd magnet Hodoscopes –Scintillator for Station 1 and 2 –Photomultiplier.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Sivers Function in Polarized Drell-Yan ➡ fundamental QCD prediction: ➡ address major milestone in hadronic physics (HP13) MI polarization scheme: from.
E906/Drell-Yan: Monte Carlo, Data Acquisition and Data Analysis Paul E. Reimer Expected Rates and Monte Carlo (WBS 2.5.1) Data Acquisition (WBS 2.4) –CODA.
Probing Valence Quarks and the Sivers Distribution with Polarized-Beam Drell-Yan Paul E Reimer Physics Division Argonne National Laboratory 7 October 2014.
1 Flavor Symmetry of Parton Distributions and Fragmentation Functions Jen-Chieh Peng Workshop on “Future Prospects in QCD at High Energy” BNL, July 17-22,
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Probing Hadronic Structure with Baryonic Probes –
E906 Spectrometer Upgrade Overview Paul E. Reimer Experimental Approach Impact on Fermilab Magnet Coil Fabrication Spectrometer Upgrades.
Fermilab E906/Drell-Yan: Kick-off Don Geesaman Argonne National Laboratory.
NanoPHYS’12 – December 17-19, 2012 K. Nakano, S. Miyasaka, K. Nagai and S. Obata (Department of Physics, Tokyo Institute of Technology) Drift Chambers.
Single Spin Asymmetries and Sivers Function Sivers Function in Polarized Drell-Yan ➡ fundamental QCD prediction: Polarized Drell-Yan at Fermilab ➡ polarized.
Measuring the Position Resolution of a COMPASS Drift Chamber Prototype Rojae Wright 1, Ihnjea Choi 2, Caroline Riedl 2, Matthias Grosse Perdekamp 2 (1)
NEUTRINO PHYSICS 1. Historical milestones 2. Neutrinos at accelerators 3. Solar and atmospheric neutrinos 4. Neutrino oscillations 5. Neutrino astronomy.
E906: Drell-Yan Measurements of Nucleon and Nuclear Structure with the Fermilab Main Injector Physics Goals Don Geesaman 11 December 2006 What will we.
Drell Yan experiments: Past and ‘Future‘ Florian Sanftl (Tokyo Tech, Shibata Nucleon11 January 7th 2011, KEK.
Muon-raying the ATLAS Detector
Opportunities with Drell-Yan Scattering at Fermilab Paul E. Reimer Physics Division Argonne National Laboratory 1.The Drell-Yan Process—A Laboratory for.
Paul E. Reimer Argonne National Laboratory 11 February 2003 Measurement of the Absolute Drell-Yan Dimuon Cross Section in 800 GeV/c pp and pd Collisions.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Investigation of Angular Distributions of Drell-Yan Dimuons in p+p and p+d Interactions with the E906/SeaQuest Experiment Christine A. Aidala Los Alamos.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Improved Measurement of d/u Asymmetry in the Nucleon Sea
Unpolarized Drell-Yan Experiments at Fermilab and J-PARC Paul E. Reimer 7 April 2008 What do we measure with Drell-Yan? –Selectivity for sea quarks What.
Study of Antiquarks in the Proton with a High Energy Drell-Yan Experiment Florian Sanftl (D1 Student, Shibata GCOE Colloquium January 14th.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Drell-Yan Experiments at Fermilab: SeaQuest and Beyond
Fermilab E-906/SeaQuest: Measurements of pA Spin Independent Drell-Yan Paul E. Reimer Physics Division Argonne National Laboratory 7 January 2013 I.The.
Inclusive Measurements of inelastic electron/positron scattering on unpolarized H and D targets at Lara De Nardo for the HERMES COLLABORATION.
Dec. 1, 2005S. Sawada / J-PARC-HS051 Dimuon measurement at J-PARC (LoI-15: Physics of high-mass dimuon production at the 50-GeV Proton Synchrotron) Shin’ya.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Introduction SeaQuest: Fermilab Experiment E906 ➡ What will we learn? ➡ What will we measure? ➡ How will we measure it? Beyond SeaQuest ➡ Polarized Drell-Yan.
M. Garcia-Sciveres July 2002 ATLAS A Proton Collider Detector M. Garcia-Sciveres Lawrence Berkeley National Laboratory.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
Polarised DIS Experiment Gerhard Mallot. G. Mallot/CERN Spin Summer School, BNL, 2004 Plan Lecture I –introduction –kinematics –the cross section –structure.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
1 Experimental Particle Physics PHYS6011 Fergus Wilson, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Deeply virtual  0 electroproduction measured with CLAS.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Putting a New Spin on an Existing Machine: Prospects for Polarizing the Fermilab Main Injector Christine A. Aidala University of Michigan (On behalf of.
Measuring the Position resolution of a COMPASS Drift Chamber Prototype Rojae Wright, Mathias Perdekamp, Ihnjea Choi, Alabama A&M university, University.
E-906/SeaQuest: Parton Energy Loss and Antishadowing Benjamin W. Miller of Abilene Christian University For E-906/SeaQuest Abstract In addition to measuring.
Quark Energy Loss in Cold Nuclear Matter at the E906 Experiment Patrick L. McGaughey LANL Medium Energy Nuclear Physics Review December 14, 2009 E906 Bend.
Introduction SeaQuest: Fermilab Experiment E906 ➡ What will we learn? ➡ What will we measure? ➡ How will we measure it? ➡ When we will do it? Beyond SeaQuest.
SeaQuest (E906) David Christian Fermilab August 22, 2010.
120 GeV Proton beam FMAG: Focusing Magnet STATION 1: Wire chamber Hodoscopes STATION 4 Prop tubes Hodoscopes KMAG: Tracking magnet STATION 2: Wire chamber.
Opportunities with polarized Drell-Yan at Fermilab 1 Wolfgang Lorenzon COMPASS Beyond 2020 (21-March-2016) This work is supported by qqqqqqqq GGGG.
E-906/SeaQuest: Experimental Readiness Review Paul E. Reimer Argonne National Laboratory 8 February 2013.
Quark Matter 2002, July 18-24, Nantes, France Dimuon Production from Au-Au Collisions at Ming Xiong Liu Los Alamos National Laboratory (for the PHENIX.
Future Drell-Yan program of the COMPASS cllaboration Norihiro DOSHITA (Yamagata University) On behalf of the COMPASS collaboration 2016/7/31N. Doshita.
Drell-Yan実験 - Fermilab-E906/SeaQuest実験 - 偏極Drell-Yan実験の計画
Measurement of nuclear effects in antiquark distributions Paul E. Reimer Physics Division Argonne National Laboratory I.Partonic structure modifications.
Arun Tadepalli Advisor: Prof. Ron Gilman Rutgers University
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL
Presentation transcript:

Commissioning Status of the Drift Chamber for a Di-Muon Spectrometer at the E906/SeaQuest Experiment at Fermilab 2011 年 10 月 24 日, GCOE 東工大 Florian Sanftl, 柴田研究室

Outline 2 1)Physics Motivation & Introduction 2)E906/SeaQuest: Physics Goal 3)Muon Pair Spectrometer 4)Design and Commissioning of Drift Chamber built by Japanese Group 5)Track Reconstruction Algorithm / XT curve / position resolution of charged particles 6)Conclusion & Outlook 2011 年 10 月 24 日 GCOE 東工大

Photon e+ e- 1) Physics Introduction & Motivation 3 Proton  Three “Valence” quarks  2 “up” quarks (q = +⅔)  1 “down” quark (q = -⅓)  Bound together by gluons  Gluons can split into quark- antiquark pairs (similar to the photon splitting into a electron- positron pair)  The Proton “Sea” is formed of quarks and antiquarks What is the Proton? Gluons Sea-quarks 2011 年 10 月 24 日 GCOE 東工大

Purpose of our Study Is ū = đ valid in the Proton? Is there a Flavor Asymmetry of Anti-quarks in the Proton? đ - ū ≠ 0? đ/ū ≠ 1? 年 10 月 24 日 GCOE 東工大

How can we measure Sea-Quarks? 年 10 月 24 日 GCOE 東工大 Deep Inelastic Scattering (DIS)Drell-Yan Process  Electron beam scatters off a proton  Electromagnetic interaction between electron and quark  Comparing electron before and after interaction reveals information about the proton structure  Proton beam scatters off a proton  Quark and anti-quarks annihilate into virtual photon  Virtual photon decays into two muons  Anti-quarks can be selected Proton / Target Proton / Beam Proton 90° Rotation

Importance of ‘Bjorken-x’ x B and Q 年 10 月 24 日 GCOE 東工大  Q 2 : 4-momentum transferred squared (“virtuality of photon”) Q 2 = -q 2 = 2E e E’ e (1+cosθ l )  Alternative way for Q 2 : Q 2 also represents spatial resolution where proton is probed r = hc/Q = 0.2fm/Q[GeV] typically Q 2 > 1GeV 2, r < 0.2* m  Bjorken-x: x B = fractional momentum carried by the struck quark x B = p QUARK / p PROTON  0 ≤ x B ≤ 1  q(x B,Q 2 ): probability to hit a quark with flavour q, x B and Q 2

Experimental Results 年 10 月 24 日 Unknown effects apparently dilutes meson cloud effects at large-x  NMC (Gottfried Sum Rule)  NA51 (Drell-Yan)  E866/NuSea (Drell-Yan) ū ≠ đ đ - ū đ / ū GCOE 東工大

2) The E906/SeaQuest Experiment 年 10 月 24 日 GCOE 東工大 Old Experiment: Fermilab E866/NuSea  1 H, 2 H, and nuclear targets  800 GeV proton beam New Experiment: Fermilab E906/SeaQuest  1 H, 2 H, and nuclear targets  120 GeV proton Beam  Higher Cross section and  Less Background 50x statistics!! 50x statistics!! Fixed Target Beam lines Tevatron 800 GeV Main Injector 120 GeV

Physics Goal 年 10 月 24 日 GCOE 東工大 E906/Drell-Yan will extend old measurements to x B values > 0.3 and reduce statistical uncertainty.

25m Solid Iron Solid Iron Focusing Magnet, Hadron absorber and beam dump 4.9m Mom. Meas. (KTeV Magnet) Hadron Absorber (Iron Wall) Station 1: Hodoscope array MWPC tracking Station 4: Hodoscope array Prop tube tracking Liquid H 2, d 2, and solid targets Station 2 and 3: Hodoscope array Drift Chamber tracking Drawing: T. O’Connor and K. Bailey Station 3: NEW from Tokyo Tech 2011 年 10 月 24 日 GCOE 東工大 10 3) Muon Pair Spectrometer

St. 4 Prop Tubes: Homeland Security via Los Alamos St. 3 & 4 Hodo PMT’s: E-866, HERMES, KTeV St. 1 & 2 Hodoscopes: HERMES St. 2 & 3Minus- tracking: E-866 St. 3: NEW from Japanese Collaborators St. 2 Support Structure: KTeV Target Flasks: E-866 Cables: KTeV 2 nd Magnet: KTeV Analysis Magnet Hadron Absorber: Fermilab Rail Head??? Solid Fe Magnet Coils: E-866 SM3 Magnet Shielding blocks: old beamline (Fermilab Today)Fermilab Today Solid Fe Magnet Flux Return Iron: E-866 SM12 Magnet Expect to start collecting data this autumn! 2011 年 10 月 24 日 GCOE 東工大 11 Motivation: Re-do, Re-use & Re-cylce

Spectrometer Top View 年 10 月 24 日 GCOE 東工大 25 m μ+μ+

U U’ V X V’ X’ Cell Structure Cell width & height 20 mm Wire spacing 10 mm Diameter sense wire (Au-W) 30 μm, others (Au-CuBe) 80 μm Performance Parameters Gas-gain ~4.0E5 Drift velocity 3-6 cm / μsec (Ar:CO 2 ) 2011 年 10 月 24 日 GCOE 東工大 13 General Performance requirements Detection Area: 1.6 m (vertical) x 2.2 m (horizontal) 6 Active layers: U/U’ (+14°), X/X’ (0°), V/V’ (-14°) Position resolution: < 400 μm per plane Gas Selection: For now: Argon:CO 2 (80:20) 4) Design of the New Drift Chamber μ + / μ -

14 June, 2009 January, 2010 March, 2010 July, 2010 Now STATUS of Station 3+ DC Tests at RIKEN Tests at Fermilab Installation & Setup in Spectrometer Design completed Fabrication completed Transport to RIKEN Transport to Fermilab 2011 年 10 月 24 日 GCOE 東工大 Commissioning Timeline

Measure time difference between trigger and Signal from Chamber Convert time to distance by simulation(GARFIELD) Reconstruct Track (5 layer based) 2-dim distribution Time vs. Distance Project distance distributions and fit for position resolution Extract new time to distance relation We are measuring: Coincidence between bottom and top scintillator caused by cosmic rays Time difference between coincidence and signal from chamber Accepted Hits Projected distance 2011 年 10 月 24 日 GCOE 東工大 15 5) Track Reconstruction Algorithm Reconstructed track Scintillator Iteration Scintillator Cosmic Ray

XT extraction: 1 st Iteration Extracted curve agrees well with input curve within uncertainties Still too little statistics from the edge of cell 2011 年 10 月 24 日 GCOE 東工大 16 Deviation simulation between measurement: Green bands is width of the projections Those are constant over a wide T range Band corresponds to position resolution of 500μm Tilting behavior due to statistical effects Results and Discussion

2011 年 10 月 24 日 GCOE 東工大 17 E906/SeaQuest is a Drell-Yan experiment It measures the asymmetry of anti-quarks in the proton Tokyo Tech group designed and built and a new drift chamber We prepared a Track Reconstruction Algorithm Algorithm is working well We already achieved a position resolution of 500μm which is very close to the design value of 400μm Improvement by more iterations We are ready for the first beam in November 2011!!! 6) Conclusion and Outlook

The E906 Collaboration 年 10 月 24 日 GCOE 東工大 Abilene Christian University Obiageli Akinbule Brandon Bowen Mandi Crowder Tyler Hague Donald Isenhower Ben Miller Rusty Towell Marissa Walker Shon Watson Ryan Wright Academia Sinica Wen-Chen Chang Yen-Chu Chen Shiu Shiuan-Hal Da-Shung Su Argonne National Laboratory John Arrington Don Geesaman* Kawtar Hafidi Roy Holt Harold Jackson David Potterveld Paul E. Reimer* Josh Rubin University of Colorado Joshua Braverman Ed Kinney Po-Ju Lin Colin West Fermi National Accelerator Laboratory Chuck Brown David Christian University of Illinois Bryan Dannowitz Dan Jumper Bryan Kerns Naomi C.R Makins Jen-Chieh Peng KEK Shin'ya Sawada Ling-Tung University Ting-Hua Chang Los Alamos National Laboratory Gerry Garvey Mike Leitch Han Liu Ming Xiong Liu Pat McGaughey University of Maryland Prabin Adhikari Betsy Beise Kaz Nakahara University of Michigan Brian Ball Wolfgang Lorenzon Richard Raymond National Kaohsiung Normal University Rurngsheng Guo Su-Yin Wang RIKEN Yuji Goto Atsushi Taketani Yoshinori Fukao Manabu Togawa Rutgers University Lamiaa El Fassi Ron Gilman Ron Ransome Elaine Schulte Brian Tice Ryan Thorpe Yawei Zhang Texas A & M University Carl Gagliardi Robert Tribble Thomas Jefferson National Accelerator Facility Dave Gaskell Patricia Solvignon Tokyo Institute of Technology Toshi-Aki Shibata Kenichi Nakano Florian Sanftl Shintaro Takeuchi Shou Miyasaka Yamagata University Yoshiyuki Miyachi

Flavor Asymmetry: Models 年 10 月 24 日 GCOE 東工大 LA- LP  Chiral Quark models—effective Lagrangians  Meson Cloud in the nucleon—Sullivan process in DIS  Instantons  Statistical Parton Distributions Antiquarks in spin 0 object → No net spin  Pauli Blocking: Excess of up-quarks permits creation of up-anti-up-pairs