Instructor: Christopher Cole Some slides taken from Kurose & Ross book IT 347: Chapter 1.

Slides:



Advertisements
Similar presentations
Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 5 Omar Meqdadi Department of Computer Science and Software Engineering University of.
Advertisements

Summer Workshop on Cyber Security Computer Networks Security (Part 1) Dr. Hamed Mohsenian-Rad University of California at Riverside and Texas Tech University.
Chapter 1 Review Csc4220/6220 Computer Networks Instructor: Akshaye Dhawan.
Introduction 1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet as example.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
CS 381 Introduction to computer networks Chapter 1 - Lecture 3 2/5/2015.
Introduction1-1 CSE4213 Computer Networks II Chapter 1 Introduction Course page:
Introduction1-1 Introduction to Computer Networks Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet.
Lecture 1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
Lecture Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
1 Day 01 - The Internet. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Lecture 1 Overview: roadmap 1.1 What is computer network? the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network.
Lecture 1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
What’s the Internet: “nuts and bolts” view
1: Introduction1 Part I: Introduction Goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Ch 1. Computer Networks and the Internet Myungchul Kim
Lecture 1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Protocol layers, service models.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April Reading.
Introduction1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A note.
CS 3830 Day 2 Introduction 1-1. Announcements  Program 1 posted on the course web  Project folder must be in 1DropBox on S drive by: 9/14 at 3pm  Must.
CS671 Advanced Computer Networking Chen Qian Fall 2014 Introduction CQ (2014) 1-1.
Introduction1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet as example.
CS448 Computer Networking Chapter 1 Introduction to Computer Networks Instructor: Li Ma Office: NBC 126 Phone: (713)
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
2-1 Last time  Course mechanics  What is the Internet?  hosts, routers, communication links  communications services, protocols  Network Edge  client-server,
Chapter 1 Introduction Terminology, Net Edge Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Networking Networking 101 Notes are adapted from chapter-1 in the textbook Multimedia Streaming {week-2} Mohamed Abdel-Maguid Computer Networking:
Introduction1-1 Course Code:EE/TE533 Instructor: Muddathir Qamar.
CS 3214 Computer Systems Godmar Back Lecture 23. Announcements Project 5 due Dec 8 Exercise 10 handed out Exercise 11 coming before Thanksgiving CS 3214.
Introduction 1-1 Chapter 1: Computer networks and the Internet 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network.
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
CS 3830 Day 5 Introduction 1-1. Announcements  Program 1 due today at 3pm  Program 2 posted by tonight (due next Friday at 3pm)  Quiz 1 at the end.
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Lecture 5: Internetworking: A closer View By Dr. Najla Al-Nabhan Introduction 1-1.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Ch 1. Computer Networks and the Internet Myungchul Kim
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 1 Omar Meqdadi Department of Computer Science and Software Engineering.
Introduction 1-1 Networking Admin  1 to 4 lectures a week for 11 weeks for a total of 23 lectures  Interleaves with Functional Programming  First prac.
1 Computer Networks & The Internet Lecture 4 Imran Ahmed University of Management & Technology.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
CS 3830 Day 4 Introduction 1-1. Announcements  No office hour 12pm-1pm today only  Quiz on Friday  Program 1 due on Friday (put in DropBox on S drive)
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
EEC-484/584 Computer Networks
Introduction Adapted from PowerPoint slides of J.F.Kurose, K.W.Ross Computer Netowrks: A top-down approach Zhang, Net. Admin, Spring 2012.
Ch 1. Computer Networks and the Internet Myungchul Kim
Introduction1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note.
Lecture 2: Internet Structure & Internetworking By Dr. Najla Al-Nabhan edited by Maysoon Al Duwais Introduction 1-1.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CSEN 404 Introduction to Networks Amr El Mougy Lamia AlBadrawy.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
MITM753: Advanced Computer Networks
Computer Networks Dr. Adil Yousif CS Lecture 1.
Graciela Perera Introduction Graciela Perera
CS 3214 Computer Systems Networking.
Introduction to Networks
Part 0: Networking Review
Slides taken from: Computer Networking by Kurose and Ross
Chapter 1: Introduction
CS 3214 Computer Systems Lecture 21 Godmar Back.
CS 3214 Computer Systems Networking.
Chapter 1: Introduction
Chapter 1: Introduction
Chapter 1 Introduction Computer Networking: A Top Down Approach
Presentation transcript:

Instructor: Christopher Cole Some slides taken from Kurose & Ross book IT 347: Chapter 1

Top-down? Networking layers Application layer = “high growth area” The Web, P2P, media streaming, etc. application presentation session transport network link physical

Internet protocol stack Introduction 1-3 application: supporting network applications – send messages FTP, SMTP, HTTP transport: process-process data transfer – send segments TCP, UDP network: routing of datagrams from source to destination IP, routing protocols link: data transfer between neighboring network elements – send frames PPP, Ethernet physical: bits “on the wire” Ethernet over twisted pair, coax, fiber, etc. application transport network link physical

Encapsulation Introduction 1-4 source application transport network link physical HtHt HnHn M segment HtHt datagram destination application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M network link physical link physical HtHt HnHn HlHl M HtHt HnHn M HtHt HnHn M HtHt HnHn HlHl M router switch message M HtHt M HnHn frame

Hosts or End Systems Computer, laptop, phone, gaming consoles, web cams, TVs (security systems, toasters, etc.) Connected together with Communication links (twisted pair, coax, fiber) Packet switches (routers or link-layer switches) Information is sent (and split up into) packets (header added to each package) Transmission rate (each link is different)

ISPs connect you to the internet Protocols control what happens TCP and IP are important to internet Internet standards by Internet Engineering Task Force (IETF) They put out Requests for Comments (RFCs) Define HTTP, SMTP, etc. Project 1 has the protocol of creating a client-server program.

What’s a protocol? Introduction 1-7 a human protocol and a computer network protocol: Q: Other human protocols? Hi Got the time? 2:00 TCP connection request TCP connection response Get time

The network edge: Introduction 1-8 end systems (hosts): run application programs e.g. Web, at “edge of network”  client/server model  client host requests, receives service from always-on server  e.g. Web browser/server; client/server  peer-peer model:  minimal (or no) use of dedicated servers  e.g. Skype, BitTorrent Home network Institutional network Mobile network Global ISP Regional ISP

How do you connect? Dial-up Cable shared DSL Downstream 50 kHz to 1 Mhz Upstream 4 kHz to 50 kHz Phone 0 to 4 kHz Fiber to Home FIOS (also shared?) Other WiMAX, 3G access (wireless networks)

Physical Media Often, the cost is not the physical link, but the labor of installation Twisted Pair Copper 1 Gbps (faster now?) Coaxial Cable Fiber Optics Incredibly long distances (overseas) Internet Backbone Satellite (hundreds of Mbps) Radio

Packet Switching Packets (long messages split up) Source & Destination address Go through each switch Output queue Packet loss Circuit switching/packet switching How does a packet get through? Forwarding table

ISPs and Internet Backbones Relatively small number of Tier 1 ISPs all linked together (Sprint, Verizon, MCI, AT&T, Level3, Qwest) How do you know if you are Tier 1? These are Internet Backbone networks Tier 2 are customers of Tier 1 and providers to rest Sometimes peer with each other

Internet structure: network of networks Introduction 1-13 a packet passes through many networks! Tier 1 ISP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP

Okay, any Questions?

Delays Processing Delay: time it takes for router to read header of packet (microseconds) Queuing Delay: time to wait in line to get pushed to the wire (0 time if there is nobody in the queue) Transmission Delay: Time to push the packet out onto the wire. Depends on the speed of the link and length of packet. Packet Length = L bits, link speed = R Mbps. Transmission delay = L/R Propagation Delay: depends on the distance between the two routers. d is distance between routers, and s is propagation speed of link (typically 2x10^8 meters/sec to 3). Measure d/s. d nodal = d proc + d queue + d trans + d prop traffic intensity: L/R is in important number again. If a is the average queuing delay, La/R should never be > 1 (otherwise packets will just stack up) Other delays: modulation/encoding delay for modems, etc.

Throughput Introduction 1-16 throughput: rate (bits/time unit) at which bits transferred between sender/receiver instantaneous: rate at given point in time average: rate over longer period of time server, with file of F bits to send to client link capacity R s bits/sec link capacity R c bits/sec pipe that can carry fluid at rate R s bits/sec) pipe that can carry fluid at rate R c bits/sec) server sends bits (fluid) into pipe

Throughput (more) Introduction 1-17 R s < R c What is average end-end throughput? R s bits/sec R c bits/sec  R s > R c What is average end-end throughput? R s bits/sec R c bits/sec link on end-end path that constrains end-end throughput bottleneck link

Network Security The internet was not made with security in mind SMTP protocol Denial of Service attacks Anybody can sniff packets IP spoofing Man in the middle attacks