Title Vortex nanoliquid in high-temperature superconductors.

Slides:



Advertisements
Similar presentations
Unbinding of biopolymers: statistical physics of interacting loops David Mukamel.
Advertisements

Title Vortex matter in presence of disorder Eli Zeldov Weizmann Institute of Science Rehovot, Israel.
高温超導的量子磁通状態和相変 胡 暁 計算材料科学研究中心 物質・材料研究機構、日本筑波    hc/2e |||| B JsJs  Vortex states and phase transitions in high-Tc superconductivity Xiao Hu National.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Intermolecular Forces and
STM/S Imaging Studies in the Vortex State Anjan K. Gupta Physics Department, IIT, Kanpur (Tutorial, IVW10 at TIFR)
Kitaoka lab Itohara Keita
Intermolecular Forces and
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Multiple phase transformations in weakly pinned vortex matter S. Ramakrishnan and A. K. Grover S. Ramakrishnan and A. K. Grover Department of Condensed.
Femtosecond laser ablation dynamics in wide band gap crystals. N.Fedorov CEA/DSM/IRAMIS École Polytechnique.
Ajay Kumar Ghosh Jadavpur University Kolkata, India Vortex Line Ordering in the Driven 3-D Vortex Glass MesoSuperMag 2006 Stephen Teitel University of.
Size effect in the vortex-matter phase transition in Bi 2 Sr 2 CaCuO 8+  ? B. Kalisky, A. Shaulov and Y. Yeshurun Bar-Ilan University Israel T. Tamegai.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
Ajay Kumar Ghosh Jadavpur University Kolkata, India Vortex Line Ordering in the Driven 3-D Vortex Glass Vortex Wroc ł aw 2006 Stephen Teitel University.
Formation of 2D crystalline surface phases on liquid Au-based metallic glass forming alloys S. Mechler, P. S. Pershan, S. E. Stoltz, S. Sellner Department.
Oxide films and scanning probes J. Aarts, Kamerlingh Onnes Laboratory, Leiden University …problems not solved …(today) Wanted atomic scale electronic /
Liang He, Lei Ma, and Frank Tsui
Vortices in Classical Systems. Vortices in Superconductors  = B  da = n hc e*  e i  wavefunction Superconducting flux quantum e*=2e   = 20.7.
Vortex pinning by a columnar defect in planar superconductors with point disorder Anatoli Polkovnikov Yariv Kafri, David Nelson Department of Physics,
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Ajay Kumar Ghosh Jadavpur University Kolkata, India Vortex Line Ordering in the Driven 3-D Vortex Glass MesoSuperMag 2006 Stephen Teitel University of.
VORTEX MATTER IN SUPERCONDUCTORS WITH FERROMAGNETIC DOT ARRAYS Margriet J. Van Bael Martin Lange, Victor V. Moshchalkov Laboratorium voor Vaste-Stoffysica.
Muon Spin Rotation (µSR) technique and its applications in superconductivity and magnetism Zurab Guguchia Physik-Institut der Universität Zürich, Winterthurerstrasse.
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Intermolecular Forces and Liquids and Solids Chapter 14.
Intermolecular Forces and
Superglasses and the nature of disorder-induced SI transition
Section 3.3 Mixtures of Matter. Composition of Matter Matter SubstanceMixture.
Structure in the mixed phase
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
L.Ya. Vinnikov   L.A, Emelchenko ISSP RAS, Chernogolovka, RUSSIA
Magneto-optical imaging of Superconductors Satyajit S.Banerjee Dept of Physics, Indian Institute of Technology, Kanpur, India.
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,
IVW2005, TIFR, India Jan.11(2005)1 Dingping Li School of Physics, Peking University, China Baruch Rosenstein, NCTS&NCTU, Hsinchu, Taiwan, Weizmann Institute&Bar.
Intermolecular Forces and Liquids and Solids Chapter 12 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
P. M. Grant Superconductivity 101 Superconductivity Workshop Charlotte, 24 May 1999 Superconductivity 101 A Primer for Engineers Paul M. Grant
Vortex avalanches in superconductors: Size distribution and Mechanism Daniel Shantsev Tom Johansen andYuri Galperin AMCS group Department of Physics, University.
Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
CdS & CdSe Nanocrystals Grown in Glass  Nazanin Hosseinkhah  1382/3/12.
Past and Future Insights from Neutron Scattering Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research  Virtues and Limitations.
Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
In Cooperation with DSM NeoResins by Sylvia Hanke.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
1.Introduction 2.Vortex Nernst effect 3.Enhanced Diamagnetism 4.Fragile London rigidity T>Tc 5.Low-temp. Quantum Vortex Liquid State Vorticity and the.
1 An Arrangement for Obtaining the X-ray Diffraction Pattern of a Crystal.
Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Transport Measurements in Superconductivity and DC Magnetization
1 Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
IMF and Solids Image:Wikimedia Commons User Alchemistry-hp.
Intermolecular Forces and Liquids and Solids Chapter 13.
Intermolecular Forces and
Department of Electronics
Liquid Crystals The Fourth State of Matter? Dr. Vance Williams
Scientific Achievement
Intermolecular Forces and
2.2 Classification of Matter
List the 5 phases of matter
Created and presented by group 4
Changes in matter Mixtures.
Intermolecular Forces and
List the 5 phases of matter
Intermolecular Forces
Fig. 2 Impact on Fe(Se,Te) superconductivity of heavy ion irradiation.
Presentation transcript:

Title Vortex nanoliquid in high-temperature superconductors

BSCCO PD 5 phases Vortex matter phase diagram in Bi 2 Sr 2 CaCu 2 O 8 B T Point disorder

BSCCO PD 3 phases B T quasi - ordered - lattice (Bragg glass) Vortex liquid Amorphous Vortex matter phase diagram in Bi 2 Sr 2 CaCu 2 O 8 Point disorder

liquid Vortex line Bose glass Bose H c1 (T) H c2 (T) H BG (T) H T TcTc glass Bose glass schematic Bose glass phase with columnar defects Nelson and Vinokur, PRL 68, 2398 (1992) Vortices pinned by columnar defects

liquid Vortex line Bose glass Bose H c1 (T) H c2 (T) H BG (T) H T TcTc glass Bose glass Bose glass phase with columnar defects Radzihovsky, PRL 74, 4923 (1995)

From BrG to BG Bose glass phase with columnar defects Structure of vortex matter when just few CDs are present? B T Bragg glass Vortex liquid Amorphous B T Vortex liquid Bose glass ? CDs

Ha  HaHa  Ha T    T B(r)    B(r) I    I Differential magneto-optical system Superconductor F=F= Garnet indicator He lamp CCD camera Polarizer Cryostat Solenoid Analyzer Microscope DMO technique HaHa B(r)

Movie BSCCO#3 large color

Artificial disorder by heavy ion irradiation Crystal with mask and CDs SST mask 90  m Columnar defects by 1 GeV Pb irradiation through perforated mask 7 nm TEM of columnar defects

Movie Satya Bf=20G, B=50G

Upward shift of Bm pristine solid liquid pristine melting Upward shift of the melting line with CDs

Upward shift of Bm, B  5G solid liquid solid liquid pristine B  =5 G Upward shift of the melting line with CDs

Upward shift of Bm, 10G solid liquid 5 G5 G pristine 10 G Upward shift of the melting line with CDs

Upward shift of Bm, 20G solid liquid 5 G5 G pristine 20 G 10 G Upward shift of the melting line with CDs

Upward shift of Bm, 50G all Upward shift of the melting line with CDs solid liquid 5 G5 G 20 G B  =50 G 10 G pristine

Vertical shift of Bm Upward shift of the melting line with CDs vertical shift in B m

Horizontal shift of Tm with CDs Upward shift of the melting line with CDs vertical shift in B m horizontal shift in T m

Magnetic decoration with CDs Crystal w mask and decoration SST mask 90  m Columnar defects by 1 GeV Pb irradiation through perforated mask Magnetic decoration B  = 40 G B   = 10 G 5 m5 m5 m5 m

Crystal with decoration SST mask 90  m Columnar defects by 1 GeV Pb irradiation through perforated mask porous Braggglass Bragg glass Magnetic decoration B  = 40 G B   = 10 G Magnetic decoration with CDs

AFM mica and decoration porous Braggglass Bragg glass Magnetic decoration B  = 40 G B   = 10 G AFM of etched columnar defects in mica B   = 10 G 20  m Magnetic decoration with CDs

Decoration B/Bf=1 Magnetic decoration BSCCO B  = 10 G B   = 10 G Etched mica B   = 10 G 20  m B  / B   = 1 Magnetic decoration with CDs

Decoration B/Bf=4 Magnetic decoration BSCCO B  = 40 G B   = 10 G Etched mica B   = 10 G 20  m B  / B   = 4 Magnetic decoration with CDs

Decoration B/Bf=8 Magnetic decoration BSCCO B  = 80 G B   = 10 G Etched mica B   = 10 G 20  m B  / B   = 8 Magnetic decoration with CDs

Size of crystallites Etched mica B   = 10 G 20  m number of vortices in the crystallites Magnetic decoration with CDs B   = 10 G

Density of lattice defects Etched mica B   = 10 G 20  m density of vortex lattice defects Magnetic decoration with CDs Two distinct vortex populations: soft crystallites and rigid matrix amorphous porous

Melting line porous Melting of porous vortex matter skeleton melting 5 G5 G 20 G 50 G 10 G pristine melting of crystallites delocalization

Imaging of transport current distribution in irradiated BSCCO Self-field with CDs small crystal 50mA, 40G, B   = 20 G B self K JyJyJyJy K K - I- I- I- I + I

Self-field with CDs large crystal Imaging of transport current distribution in irradiated BSCCO B self JyJyJyJy

Vortex matter phase diagram in Bi 2 Sr 2 CaCu 2 O 8 with CDs Pristine melting Bragg glass liquid

Vortex matter phase diagram in Bi 2 Sr 2 CaCu 2 O 8 with CDs Porous melting porous solid liquid ? B  = 60 G

Vortex matter phase diagram in Bi 2 Sr 2 CaCu 2 O 8 with CDs Nanoliquid PD porous solid liquid nano- liquid homogeneous B dl  exp(-T/T 0 ) Lopatin and Vinokur, PRL 92 (2004) Kierfeld and Vinokur, PRL 94 (2005) B  = 60 G

Transport data in Bi 2 Sr 2 CaCu 2 O 8 with CDs R(T) nanoliquid homogeneous liquid nonoliquid

homogeneous liquid T dl TmTm CD TmTm 0 B = 125 G Transport data in Bi 2 Sr 2 CaCu 2 O 8 with CDs Transport nanoliquid 1 B  = 60 G nonoliquid porous solid

Transport data in Bi 2 Sr 2 CaCu 2 O 8 with CDs Transport nanoliquid 2 T dl TmTm CD TmTm 0 B = 125 G B  = 60 G homogeneous liquid nonoliquid porous solid

Transport data in Bi 2 Sr 2 CaCu 2 O 8 with CDs Transport nanoliquid 2 nonoliquid porous solid T dl TmTm CD TmTm 0 B = 125 G B  = 60 G homogeneous liquid enhanced c-axis correlations Au contacts on BSCCO crystal +V -V -I +I

Vortex matter phase diagram in Bi 2 Sr 2 CaCu 2 O 8 with CDs PD w CDs summary Homogeneous liquid B  = 60 G Porous solid Nanoliquid