Surface Plasmons devices and leakage radiation microscopy

Slides:



Advertisements
Similar presentations
Stefan Maier – Bath Complex Systems 2005 Towards a common description of dielectric and metallic cavities Stefan Maier Photonics and Photonic Materials.
Advertisements

Nanophotonics Class 2 Surface plasmon polaritons.
Jenny Yu, Dr. Keith Roper, Department of Bioengineering, 2007 Abstract Introduction Experimental Results Summary References Acknowledgements Varying cone.
Measuring film thickness using Opti-Probe
Engineering the light matter interaction with ultra-small open access microcavities Jason M. Smith Department of Materials, University of Oxford, Parks.
Complete Band Gaps: You can leave home without them. Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT.
"NANO-ACOUSTICS AND TERAHERTZ ACOUSTICS"
J. P. Reithmaier1,3, S. Höfling1, J. Seufert2, M. Fischer2, J
From weak to strong coupling of quantum emitters in metallic nano-slit Bragg cavities Ronen Rapaport.
Nanonics SPM Probes Nanonics probes Product Presentation.
Plasmonic Imaging for Optical Lithography X-ray Wavelengths at Optical Frequencies Experiments: Progress and Plans Yunping Yang Josh Conway Eli Yablonovitch.
Optical and thermal imaging of nanostructures with a scanning fluorescent particle as a probe. Near-field experiments : ESPCI, Paris, FranceLionel Aigouy,
Gothic Cathedrals and Solar Cells (and maybe a Grail?) A short introduction to the phenomenon of Surface Plasmons and their role in the scattering of light.
Consider the case of Total Internal Reflection (TIR): tt ii n t = 1 n i = 1.5 with a little algebra, we can write:
Taming light with plasmons – theory and experiments Aliaksandr Rahachou, ITN, LiU Kristofer Tvingstedt, IFM, LiU , Hjo.
MSEG 667 Nanophotonics: Materials and Devices 6: Surface Plasmon Polaritons Prof. Juejun (JJ) Hu
Surface Plasmon Spectroscopy Lokanathan Arcot Department of Forest Products Technology School of Chemical Technology Aalto University.
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
AFM-Raman and Tip Enhanced Raman studies of modern nanostructures Pavel Dorozhkin, Alexey Shchekin, Victor Bykov NT-MDT Co., Build. 167, Zelenograd Moscow,
Precision Tilt and Radius of Curvature Sensor Using Double-Pass AOM Kyuman Cho Department of Physics Sogang University.
Analysis of the Propagation of Light along an Array of Nanorods Using the Generalized Multipole Technique Nahid Talebi and Mahmoud Shahabadi Photonics.
1 Localized surface plasmon resonance of optically coupled metal particles Takumi Sannomiya*, Christian Hafner**, Janos Vörös* * Laboratory of Biosensors.
Apertureless Scanning Near-field Optical Microscopy: a comparison between homodyne and heterodyne approaches Journal Club Presentation – March 26 th, 2007.
Excitation of surface plasmons with a scanning tunneling microscope Tao Wang, Elizabeth Boer-Duchemin, Yang Zhang, Geneviève Comtet, Gérald Dujardin ISMO,
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Surface-waves generated by nanoslits Philippe Lalanne Jean Paul Hugonin Jean Claude Rodier INSTITUT d'OPTIQUE, Palaiseau - France Acknowledgements : Lionel.
Nanophotonics II Plasmonics Biophotonics Exotics.
Introduction: Optical Microscopy and Diffraction Limit
Near-field thermal radiation
SURFACE PLASMON POLARITONS. SPPs Pioneering work of Ritchie (1957) Propagate along the surface of a conductor Trapped on the surface because of their.
Plasmon Assisted Nanotrapping E. P. Furlani, A. Baev and P. N. Prasad The Institute for Lasers, Photonics and Biophotonics University at Buffalo, SUNY.
1 Surface Enhanced Fluorescence Ellane J. Park Turro Group Meeting July 15, 2008.
Jacob B Khurgin Johns Hopkins University, Baltimore Greg Sun
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
The Maryland Optics Group Far-Field Optical Microscope with Nanometer-Scale Resolution Igor I. Smolyaninov and Christopher C. Davis Department of Electrical.
Computational Methods for Nano-scale Optics Advisor: Prof. Yehuda Leviatan Amit Hochman Dept. of Electrical Engineering, Technion – Israel Institute of.
Coupling of InGaN quantum-well photoluminescence to silver surface plasmons PRB, Vol 60, No 16, Pg Gontijo, M. Boroditsky, and E. Yablonovitch,UCLA.
Femtosecond low-energy electron diffraction and imaging
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Surface Plasmons What They Are, and Their Potential Application in Solar Cells Martin Kirkengen, AMCS, UiO Collaboration with Joakim Bergli, Yuri Galperin,
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
Interface Roughening Dynamics of Spreading Droplets
Creative Research Initiatives Seoul National University Center for Near-field Atom-Photon Technology - Near Field Scanning Optical Microscopy - Electrostatic.
M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu National Institute for Laser Plasma and Radiation Physics,
Surface Plasmon Resonance (SPR)
J.R.Krenn – Nanotechnology – CERN 2003 – Part 3 page 1 NANOTECHNOLOGY Part 3. Optics Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Class overview: Brief review of physical optics, wave propagation, interference, diffraction, and polarization Introduction to Integrated optics and integrated.
Munich, Germany June 2007ECBO 2007 Static depth dependent dispersion compensation in a real-time static delay line grating-based correlation OCT.
1 « Control of pattern formation in a single feedback system by photonic bandgap structures » Nicolas Marsal, Germano Montemezzani, Delphine Wolfersberger,
Nonlinear Optical Response of Nanocavities in Thin Metal Films Yehiam Prior Department of Chemical Physics Weizmann Institute of Science With Adi Salomon.
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
NIRT: Opto-Plasmonic Nanoscope NSF NIRT Grant ECS PIs: Y. Fainman, V. Lomakin, A. Groisman, and G. W. Schmid-Schoenbeim University of California,
-Microscopes- Types. Goals: 1. Check your proficiency 2. Develop proficiency 3. Proficiencies include:
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh.
A brief overview of Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater,
Near Field Scanning Optical Microscopy (NSOM, SNOM, NFOM) Stephanie Pruzinsky Group Meeting, June 6, 2002.
My research topics related to surface plasmon
Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas Vladimir A. Zenin, Ilya P. Radko, Valentyn S. Volkov.
Cold atoms near surfaces beyond disorder Della Pietra Leonardo Physikalisches Institut der Universität Heidelberg Philosophenweg 12, Heidelberg,
3.3 Other types of microscopy
Fei long Mao, Hengliang Wang, Zhenghua An
Diffraction T. Ishikawa Part 1 Kinematical Theory 1/11/2019 JASS02.
Nano-Plasmonics Jinesh. K.B.
Scalar theory of diffraction
Types of Microscopy Type Probe Technique Best Resolution Penetration
Toward broadband, dynamic structuring of a complex plasmonic field
Fig. 2 Optomechanical scheme to measure photon angular momentum and optical torque in a waveguide. Optomechanical scheme to measure photon angular momentum.
Atilla Ozgur Cakmak, PhD
Presentation transcript:

Surface Plasmons devices and leakage radiation microscopy A.Drezet (ISIS- Univ. Louis Pasteur, Strasbourg, France) A. Hohenau, D. Koller, F. R. Aussenegg, J.R Krenn Nano - Optics Group ● Institute of Physics ● Univ. Graz, Austria nanooptics.uni-graz.at Marseille , 1.10. 2007

e e Surface Plasmon polaritons (SPPs) at a single interface z SPP Dielectric(Air,SiO2) E,B e Metal (Au,Ag) e Hy Raether, Surface Plasmons (Springer, Berlin, 1988). Genet and Ebbesen, Nature 445, 39 (2007). Drezet et al., Micron 38, 427 (2007).

SPP dispersion relation on a 70 nm thick gold film Total Internal reflection Au/glass Au/air KSPP Johnson and Christy, PRB 6, 4370 (1972).

SPP dispersion relation on a 70 nm thick gold film Au/glass Au/air

e e Leakage Radiation (LR) SPP modes metal glass z SPP air Air side LR Glass side LR Hecht et al., PRL 77 ,1889 (1986). A. Bouhelier et al., PRB 63, 155404 (2001).

Leakage Radiation cone LR cone SPP LR cone Rough Ag surface H. J Simon, J. K. Guha, Opt. Comm. 18, 391 (1976).

SPP SPP Au IO O2 LR LR Lens CCD NSOM (near field scanning optical microscope) SPP SPP Au Polar. IO O2 LR LR Lens 15 µm CCD

Addressing a nanoobject with SPP NSOM 4.2 K l=514 nm SPP R= distance hole-tip (nm) Quantum dots (CdTe/ZnTe) Brun et al., Europhys. Lett. 64 , 634 (2003)

Leakage Radiation Microscopy (LRM) laser LRM on 50 nm Au film O1 SPP SPP Au l=800 nm IO O2 LR LR Lens CCD Stepanov et al., Optics Letters 30, 1524 (2005). Hohenau et al., Optics Letters 30 ,893 (2005).

SPP 2D Bragg reflectors Bragg condition: Drezet et al., Europhys.Lett. 74, 693 (2006)

SPP interferometer 2D dipole model V=1, R= 0.95

LRM: Imaging the direct and the Fourier space Drezet et al., APL 89, 091117 (2006).

(A) A) SPP dispersion in the direct space T 20 µm R L Bragg mirror (out of resonance) Bragg condition: (A) T 20 µm R L

(B) SPP decay in the direct space Intensity (arbitrary units) 10 µm 20 30 40 1 (B) 10 µm Intensity (arbitrary units) 0.5 x (µm)

(A) B) SPP dispersion in the Fourier space Intensity (arbitrary units) 1 LRM (Fourier) L (A) Intensity (arbitrary units) 0.5 7.8 8.0 8.2 k (1/µm) Drezet et al., Appl.Phys.Lett. 89, 091117 (2006).

C) SPP Fourier optics (a) (A) L R 20 µm T (C) (D) (B) T C L R

SPP in plane elliptical cavity Reflectance 90% Interferences Appl.Phys.Lett. 86, 074104 (2005)

SPP in plane interferometry D1 D2 Bragg mirror SEM Intensity (a. u.) ridge LRM Phase difference 15 µm Ditlbacher et al.,APL. 81, 1762 (2002). Drezet et al., Plasmonics (2006). Phase difference

SPP in plane demultiplexer-plasmonic crystal LRM Plasmonic crystal l=750 nm 3 SPP Au a e1 e2 550 nm b l=800 nm 30 µm Drezet et al., Nanolett. (pub. on line15 mai 2007).

SPP in plane Tritter = beam splitter 3 inputs-3outputs LRM (direct) (Fourier) e2 e1 d 500nm 15 µm (Ewald sphere)

SPP in plane reflection microscope (M=3) theory SPP 2 µm LRM 400 nm Drezet et al. Submitted to Optics letters (2007).

6 µm 2 µm 3 µm Intensity (arb.units) 1 µm 1.4 µm 500 nm 10 µm X (µm)

Summary LRM is a straightforward and reliable technique for probing SPP fields in direct and Fourier space. LRM allows precise quantitative analysis of SPP propagations. Fast method: alternative to PSTM, NSOM, NFO

http://nanooptics.uni-graz.at