Effect of disorder on the fracture of materials Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France MATGEN IV, Lerici, Italy September.

Slides:



Advertisements
Similar presentations
Stress, strain and more on peak broadening
Advertisements

Chap.8 Mechanical Behavior of Composite
D. Bonamy, F. Célarié, C. Guerra-Amaro, L. Ponson, C.L. Rountree, E. Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces.
Statistical Physics Approach to Understanding the Multiscale Dynamics of Earthquake Fault Systems Theory.
Griffith Cracks Flaws Make the World Beautiful! Were it not for the flaws, rocks and mountains would have been perfectly boring.
FRACTURE Brittle Fracture Ductile to Brittle transition
FRACTURE, FAILURE AND FATIGUE Catastrophic failure in materials resulting from crack development.
CHAPTER 4: FRACTURE The separation or fragmentation of a solid body into two or more parts, under the action of stresses, is called fracture. Fracture.
Fracture Mechanics Brittle fracture Fracture mechanics is used to formulate quantitatively The degree of Safety of a structure against brittle fracture.
LECTURER5 Fracture Brittle Fracture Ductile Fracture Fatigue Fracture
3 – Fracture of Materials
Fracture, Toughness and Strength by Gordon Williams.
Chapter 7 Fracture: Macroscopic Aspects. Goofy Duck Analog for Modes of Crack Loading “Goofy duck” analog for three modes of crack loading. (a) Crack/beak.
ME 240: Introduction to Engineering Materials Chapter 8. Failure 8.1 CHAPTER 8.
(Introduction to) Earthquake Energy Balance
Elisabeth Bouchaud GROUPE FRACTURE Service de Physique et Chimie des Surfaces et des Interfaces CEA-Saclay The Chinese University of Hong-Kong, September.
FRACTURE Fracture is the separation, or fragmentation, of a solid body into two or more parts under the action of stress. Process of fracture- with two.
Fracture Mechanics Overview & Basics
Crack Nucleation and Propagation
1 /18 M.Chrzanowski: Strength of Materials SM2-12: Fracture Introduction to FRACTURE MECHANICS.
1 ASTM : American Society of Testing and Materials.
Engineering materials lecture #14
1 Universality Classes of Constrained Crack Growth Name, title of the presentation Alex Hansen Talk given at the Workshop FRACMEET, Institute for Mathematical.
Fracture, Fatigue, Corrosion and Failure Analysis of Medical Devices Health Canada, March 7, 2012 Brad James Ph.D., P.E. Exponent Failure Analysis.
Crackling Noise JPS, Shekhawat, Papanikolaou, Bierbaum, …, Dahmen, Myers, Durin, Zapperi Jan March Oct Dec Month Magnitude 7 8 Hiroshimas Earthquakes:
Sharif Rahman The University of Iowa Iowa City, IA January 2005 STOCHASTIC FRACTURE OF FUNCTIONALLY GRADED MATERIALS NSF Workshop on Probability.
The Chinese University of Hong-Kong, September 2008 Stochastic models of material failure -1D crack in a 2D sample - Interfacial fracture - 3D geometry.
PhD student Ilia Malakhovski (thesis defense June 26) Funding Stichting FOM NWO Priority Programme on Materials Disorder and criticality in polymer-like.
Earthquake dynamics at the crossroads between seismology, mechanics and geometry Raúl Madariaga, Mokhtar Adda-Bedia ENS Paris, Jean-Paul Ampuero, ETH Zürich,
Lecture #19 Failure & Fracture
Computational Fracture Mechanics
SOME SCALING PROPERTIES OF FRACTURE SURFACES 99th Statistical Mechanics Conference, May 2008 D. Bonamy, L. Ponson, E. Bouchaud GROUPE FRACTURE CEA-Saclay,
Computational Fracture Mechanics
The Chinese University of Hong-Kong, September Statistical characterization of fracture How to include these microstructure-scale mechanisms into.
Mixed Mode and Interface Fracture
ASPECTS OF MATERIALS FAILURE
Buckling Delamination with Application to Films and Laminates
Miguel Patrício CMUC Polytechnic Institute of Leiria School of Technology and Management.
Mechanical Properties
Project “The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European.
École Polytechnique Fédérale de Lausanne (EPFL),
Induced Slip on a Large-Scale Frictional Discontinuity: Coupled Flow and Geomechanics Antonio Bobet Purdue University, West Lafayette, IN Virginia Tech,
Laurent Ponson Institut Jean le Rond d’Alembert CNRS – Université Pierre et Marie Curie, Paris From microstructural to macroscopic properties in failure.
November 14, 2013 Mechanical Engineering Tribology Laboratory (METL) Arnab Ghosh Ph.D. Research Assistant Analytical Modeling of Surface and Subsurface.
Mokashi Imrankhan Sherkhan Guided by: M S Bobji Seminar on.
Fracture Mechanics-Brittle Fracture Fracture at Atomic Level Solid / Vapour Interfaces Boundaries in Single Phase Solids Interphase Interfaces in Solids.
AMML Effect of rise, peak and fall characteristics of CZM in predicting fracture processes.
Defects in Solids 0-D or point defects –vacancies, interstitials, etc. –control mass diffusion 1-D or linear defects –dislocations –control deformation.
Week 4 Fracture, Toughness, Fatigue, and Creep
Defects in Solids 0-D or point defects –vacancies, interstitials, etc. –control mass diffusion 1-D or linear defects –dislocations –control deformation.
Presented by Statistical Physics of Fracture: Recent Advances through High-Performance Computing Thomas C. Schulthess Computer Science and Mathematics.
Exam 2 Grade Distribution. Stress-strain behavior (Room T): Ideal vs Real Materials TS
Project “The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European.
Trends with Materials Heat treatment will cause embrittlement
Non-Metallic Fracture Non Metallic Fractures Ceramic Plastics or Polymers Ceramic Fracture Brittle and with very less toughness This.
Week 4 Fracture, Toughness, Fatigue, and Creep
Fracture Mechanics and Size Effect of Concrete
Fracture Mechanics Brittle fracture
3. Fracture mechanisms in real materials  Fracture of crystals: Different fracture mechanisms The importance of plasticity  Quasi-brittle fracture: R-curve.
Materials Science Metals and alloys.
Fracture of Solids Theoretical tensile strength of a solid U(r) a r
MIT Amorphous Materials 8: Mechanical Properties
Basic principles of metallic fracture
Doç.Dr.M.Evren Toygar, DEÜ
Fracture mechanics Subjects of interest Introduction/ objectives
Fracture of Solids Theoretical tensile strength of a solid U(r) a r
Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Mokashi Imrankhan Sherkhan Guided by: M S Bobji Seminar on.
Thin-Film Mechanics.
LINEAR ELASTIC FRACTURE MECHANICS
Presentation transcript:

Effect of disorder on the fracture of materials Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France MATGEN IV, Lerici, Italy September 19-23, 2011

Irradiation defects in solids Vacancy Interstitial Frenkel Other « defects » Good compromise of mechanical properties Metallic alloys (ONERA) Toughened Polymer (ESPCI) Fiber composite (Columbia) Tough ceramics (Berkeley)

How to estimate the properties of a composite?   E composite    r =  r +  r Include the effect of heterogeneities in a statistical description - Rare events statistics - Strong stress gradients in the vicinity of a crack tip

OUTLINE 1.Elements of LEFM 2.Effect of disorder on the morphology and dynamics of the crack front 3.Experimental observations 4.Discussion

1- Elements of LEFM   a A crude estimate of the strength to failure  =E xx a Failure :  x≈a  f ≈ E  f ≈ E/100 Presence of flaws!

Stress concentration at a crack tip (Inglis 1913)   2b 2a A  A >  : stress concentration 1- Elements of LEFM

Infinitely sharp tip:   Irwin (1950) K=stress intensity factor Sample geometry  (r) r Strong stress gradient A 1- Elements of LEFM

Mode II In-plane, shear, sliding K II Mode I Tension, opening Mode III Out-of-plane, shear Tearing KIKI K III Mixed mode, to leading order: 1- Elements of LEFM

Griffith’s energy balance criterion Elastic energy Surface energy Total change in potential energy: Propagation at constant applied load: 2a B  1- Elements of LEFM

Happens for a critical load: Or for a critical stress intensity factor: Fracture toughness Energy release rate 1- Elements of LEFM

 K II =0  Crack path: principle of local symmetry 1- Elements of LEFM

Onset of fracture: Beyond threshold: PMMAGlass (E. Sharon & J. Fineberg, Nature 99) 1- Elements of LEFM

Heterogeneities Rough crack front Uneven SIFs Heterogeneous path Steady crack morphology? Dynamics? (JP Bouchaud & al, 93 J. Schmittbuhl & al, 95 D. Bonamy & al, 06) 2- Effect of disorder…

2D 3D

(Meade & Keer 84, Gao & Rice 89) Stabilizing term 2- Effect of disorder…

M(f(z),z) 2- Effect of disorder…

F Edwards-Wilkinson model Non local elastic restoring force 2- Effect of disorder…

Depinning transition: order parameter V control parameter K I 0 (K I 0 -K Ic )   (K I 0 -K Ic )  V KI0KI0 K Ic ~ Stable Propagating 2- Effect of disorder…

Depinning: line in a periodic potential f(x=0,t=0)=0 x f0f0 F Pulling force Obstacle force f f=0 F T? V  (F-F m ) 2- Effect of disorder…

 2D =0.39 (A. Rosso & W. Krauth & O. Duemmer) z z+  z f(z)f(z) x t t+  t

In plane projection of crack front (Movchan, Gao & Willis 98) Out of plane projection of crack front X Z f(z) z y h(z) 2- Effect of disorder…

Local symmetry principle K II =0 Crack trajectory  ≈ 0.4  ≈ 0.5  ≈  /  ~ 0.8 (Bonamy et al, 06) 2- Effect of disorder…

f(z) Out-of-plane Projection on the yz plane In-plane Projection on the xz plane 3- Experiments 3D

P.Daguier et al. (95) x  2D ≈ Experiments 3D

Aluminium alloy  =0.77 3nm  0.1mm (M. Hinojosa et al., 98) Profiles perpendicular to the direction of crack propagation 3- Experiments 3D  = 0.78 from 5nm to 0.5mm zz Profiles perpendicular to the direction of crack propagation (  z) (µm)  = 0.77 Z max (  z) (µm)  z (µm)

Aluminum alloy (SEM+Stereo)  h/  x   z/  x 1/  3- Experiments 3D A+A+ B+B+ ΔxΔx ΔzΔz  = 0.75  = 0.6  =  /  ~ 1.2 x y z  h/  x   z/  x 1/  Mortar Quasi-crystal (STM) h (Å) Δh 2D (Δz, Δx) = ( A ) 1/2  z/  x 1/   h/  x 

Exceptions… Sandstone fracture surfaces log(P(f)) log(f)  ≈0.47 (Boffa et al. 99)  z  P(  h)  h/(  z)  (Ponson at al. 07)  ≈ Experiments 3D

« Model » material : sintered glass beads (Ponson et al, 06) Porosity 3 to 25% Grain size 50 to 200  m Vitreous grain boundaries Exceptions… 3- Experiments 3D

ζ =0.4 ± 0.05 β =0.5 ± 0.05  =ζ/β =0.8 ± independent exponents « Universal » structure function + Roughness at scales > Grain size 1/  (Ponson et al. 06) 3- Experiments 3D

R c increases with time x1x1 x S. Morel & al, PRE 2008 Rc(x 1 )  =0.75  =0.4  =0.79  =0.4 R c (x 1 ) R c (x 2 ) X 2 R c (x 2 )>R c (X 1 ) 3- Experiments 3D Mortar specimens

(K.J. Måløy & al) 3- Experiments: interfacial fracture

z(mm) x(mm) 3- Experiments: interfacial fracture  2D =0.63  2D = µm log(  h(  z)/  0 );  0 =1µm log(  z/  0 );  0 =1µm  200µm (S. Santucci et al, EPL 2010)

x x x =28.1µm/s; a=3.5µm (K.J. Måløy et al. 06) Waiting time matrix: t=0 W(z,x)=0 t>0 W t+  t (z,x)=1+W t (z,x) if front in (z,x) Front location Spatial distribution of clusters (white) v(z,x)>10 3- Experiments: interfacial fracture

0.39µm/s≤ ≤40µm/s 1.7µm ≤a≤10µm C=3 Cluster size distribution Slope -1.6 (K.J. Måløy et al. 06) (D. Bonamy & al., 08) 3- Experiments: interfacial fracture

(S. Santucci & al., 08) 3- Experiments: interfacial fracture

Disorder  roughnening Elastic restoring forces  rigidity Undamaged material Transmission of stresses through long range undamaged material :long range interactions (1/r 2 )  very rigid line Transmission of stresses through a « Swiss cheese »: Screening of elastic interactions  low rigidity 4- Discussion

Gradient percolation (A. Hansen & J. Schmittbuhl, 03) Z X Damage  RFM  gradient percolation process  3D =  3D = 2 /(1+2 )=4/5 ( RFM/3D =2) 4- Discussion

r « R c r » R c RcRc Damage zone scale Large scales: elastic domain  =0.75,  =0.6  =0.4,  =0.5 ? 4- Discussion

3 regions on a fracture surface: 1 Linear elastic region  =0.4  =0.5/log 2 Intermediate region: within the FPZ Damage = « perturbation » of the front (screening)  =0.8  =0.6  direction of crack propagation 3 Cavity scale: isotropic region Size of the FPZ - Direction of crack propagation within FPZ - Damage spreading reconstruction Fracture of an elastic solid is a dynamic phase transition 4- Discussion

Questions A model in the PFZ? How to reconcile line model and percolation gradient model ? Size of FPZ? Reliable measurements? Direct measurement of the disorder correlator Dynamics of crack propagation in 3D? Radiation damage? Breaking liquids…

Thank you!

(S. Santucci et al., 07) R k (  x)/R k G Log 10 (  x/  0 ) PMMA  ≈ 50µm  x/  0  h k (  x)/R k G PMMA  ≈ Statistical characterization of fracture 3.2- Interfacial fracture

(Salminen et al, EPL06) Peel-in (paper) 3- Statistical characterization of fracture

Gutenberg-Richter exponent 3- Statistical characterization of fracture 3.2- Interfacial fracture

Omori’s law Slope Interfacial fracture 3- Statistical characterization of fracture

(A. Marchenko et al., 06) 3.2- Interfacial fracture 3- Statistical characterization of fracture

Humid air n-tetradecane

Humid air Tetradecane 3.2- Interfacial fracture 3- Statistical characterization of fracture

Magnitude Approximate energy radiated (10 15 J) Number of earthquakes San Andreas fault (J. Sethna et al) 3.2- Interfacial fracture 3- Statistical characterization of fracture

AE measurements on mortar (B. Pant, G. Mourot et al., 07) Energy distribution Log(E/E max ) Log(N(E)) P(E)  E Fracture of three-dimensional solids 3- Statistical characterization of fracture

P(E)  E P(E)  E AE measurements on polymeric foams (S. Deschanel et al., 06) 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture

Al alloy Ni-plated BS SEM (E.B. et al., 89) r/  C(r)  r   ≈ Fracture of three-dimensional solids 3- Statistical characterization of fracture

Profiles perpendicular to the direction of crack propagation 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture

 = 0.78 from 5nm to 0.5mm zz Profiles perpendicular to the direction of crack propagation (  z) (µm) (P. Daguier & al., 96) 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture

Aluminium alloy  =0.77 3nm  0.1mm  = 0.77 Z max (  z) (µm)  z (µm) (M. Hinojosa et al., 98) Profiles perpendicular to the direction of crack propagation 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture

(J. Schmittbuhl et al, 95) Profiles perpendicular to the direction of crack propagation: granite  ≈0.8  ≈ Fracture of three-dimensional solids 3- Statistical characterization of fracture

z (µm) direction of crack front x (µm) direction of crack propagation Anisotropy of fracture surfaces  ~ 0.8  ~ 0.6 Direction of crack propagation Direction of crack front Log(Δx), log(Δz) Log (Δh) L. Ponson, D. Bonamy, E.B. (05) Fracture of three-dimensional solids 3- Statistical characterization of fracture

Exceptions… Sandstone fracture surfaces log(P(f)) log(f)  ≈0.47 (Boffa et al. 99)  z  P(  h)  h/(  z)  (Ponson at al. 07) 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture

« Model » material : sintered glass beads (Coll. H. Auradou, J.-P. Hulin & P. Vié 06) Porosity 3 to 25% Grain size 50 to 200  m Vitreous grain boundaries  Linear elastic material 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture Exceptions…

1/ z ζ =0.4 ± 0.05 β =0.5 ± 0.05 z = ζ / β = 0.8 ± independent exponents « Universal » structure function + Roughness at scales > Grain size (Ponson et al. 06) 3- Statistical characterization of fracture

Summary Cracks and fracture surfaces are self-affine: -Thin sheets  ≈0.6 at scales >  - Interfacial fracture  ’ ≈0.6 at scales <  - 3D solid out-of-plane perpendicular to crack propagation  ≈0.75 (5 decades!) - Out-of-plane parallel to the direction of crack propagation  ≈0.6 - In-plane  ’ ≈ Statistical characterization of fracture

f(z) Out-of-plane Projection on the yz plane In-plane Projection on the xz plane 3.3- Fracture of 3D specimens 3- Statistical characterization of fracture

P.Daguier et al. (95) x  ’≈ Fracture of 3D specimens 3- Statistical characterization of fracture

Out-of-plane roughness measurements Polishing 3.3- Fracture of 3D specimens 3- Statistical characterization of fracture

Al alloy Ni-plated BS SEM (E.B. et al., 89) r/  C(r)  r   ≈ Fracture of 3D specimens 3- Statistical characterization of fracture

(J. Schmittbuhl et al, 95) Profiles perpendicular to the direction of crack propagation: granite  ≈0.8  ≈ Fracture of 3D specimens 3- Statistical characterization of fracture

z (µm) direction of crack front x (µm) direction of crack propagation Anisotropy of fracture surfaces  ~ 0.8  ~ 0.6 Direction of crack propagation Direction of crack front Log( Δ x), log( Δ z) Log ( Δh ) L. Ponson, D. Bonamy, E.B. (05) Fracture of 3D specimens 3- Statistical characterization of fracture

Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm Δh 2D (Δz, Δx) = ( A ) 1/2  h (nm)  z (nm) AB ΔxΔx ΔzΔz L. Ponson et al, PRL 2006 L. Ponson et al, IJF 2006  h/  x   z/  x 1/ z  = 0.75  = 0.6 Z =  /  ~ 1.2 z

Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert Coll. D.B., L.P., L. Barbier, P. Ebert z z  = 0.75  = 0.6 z =  /  ~ 1.2 h (Å) 4- Statistical characterization of fracture

Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm  = 0.75  = 0.6 z =  /  ~ 1.2  h/  x   z/  x 1/ z h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert 4- Statistical characterization of fracture

Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm  = 0.75  = 0.6 z =  /  ~ 1.2  h/  x   z/  x 1/ z Mortar (Coll. S. Morel & G. Mourot) h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert

Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm  z/  x 1/z ( l z / l x ) 1/  (  z/ l z )/(  x/ l x ) 1/ z  h/  x  (  h/ l x )/(  x/ l x )  Universal structure function Very different length scales h (Å) Coll. D.B.,L.P.,L. Barbier,P. Ebert 4- Statistical characterization of fracture

 Exponent  1mm Preliminary results (G. Pallarès, B. Nowakowski et al., 08) 4- Statistical characterization of fracture

Exceptions… Sandstone fracture surfaces log(P(f)) log(f)  ≈0.47 (Boffa et al. 99)  z  P(  h)  h/(  z)  (Ponson at al. 07)

ζ =0.4 ± 0.05 β =0.5 ± 0.05 z =ζ/β =0.8 ± independent exponents « Universal » structure function + Roughness at scales > Grain size 1/ z (Ponson et al. 06) 4- Statistical characterization of fracture

1D crack in a 2D sample 4.1- Random Fuse Models L. De Arcanglis et al, Stochastic models of failure

(E. Hinrichsen et al. 91)  ≈0.7 =2/3 ? 4.1- Random Fuse Models 4- Stochastic models of failure (P.Nukala et al. 05)

(P.Nukala et al. 06) (G. Batrouni & A. Hansen, 98)  =  =0.52 Minimum energy surface  ≈0.41 (A. Middleton, 95 Hansen & Roux, 91)  ≈0.5 Fracture surface=juxtaposition of rough damage cavities ( Metallic glass, E.B. et al, 08) 4.1- Random Fuse Models

 s P(E)  E -1.8 E  s   ≈1.3 Avalanche size distribution (S. Zapperi et al.05) 4.1- Random Fuse Models 4- Stochastic models of failure