Effect of disorder on the fracture of materials Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France MATGEN IV, Lerici, Italy September 19-23, 2011
Irradiation defects in solids Vacancy Interstitial Frenkel Other « defects » Good compromise of mechanical properties Metallic alloys (ONERA) Toughened Polymer (ESPCI) Fiber composite (Columbia) Tough ceramics (Berkeley)
How to estimate the properties of a composite? E composite r = r + r Include the effect of heterogeneities in a statistical description - Rare events statistics - Strong stress gradients in the vicinity of a crack tip
OUTLINE 1.Elements of LEFM 2.Effect of disorder on the morphology and dynamics of the crack front 3.Experimental observations 4.Discussion
1- Elements of LEFM a A crude estimate of the strength to failure =E xx a Failure : x≈a f ≈ E f ≈ E/100 Presence of flaws!
Stress concentration at a crack tip (Inglis 1913) 2b 2a A A > : stress concentration 1- Elements of LEFM
Infinitely sharp tip: Irwin (1950) K=stress intensity factor Sample geometry (r) r Strong stress gradient A 1- Elements of LEFM
Mode II In-plane, shear, sliding K II Mode I Tension, opening Mode III Out-of-plane, shear Tearing KIKI K III Mixed mode, to leading order: 1- Elements of LEFM
Griffith’s energy balance criterion Elastic energy Surface energy Total change in potential energy: Propagation at constant applied load: 2a B 1- Elements of LEFM
Happens for a critical load: Or for a critical stress intensity factor: Fracture toughness Energy release rate 1- Elements of LEFM
K II =0 Crack path: principle of local symmetry 1- Elements of LEFM
Onset of fracture: Beyond threshold: PMMAGlass (E. Sharon & J. Fineberg, Nature 99) 1- Elements of LEFM
Heterogeneities Rough crack front Uneven SIFs Heterogeneous path Steady crack morphology? Dynamics? (JP Bouchaud & al, 93 J. Schmittbuhl & al, 95 D. Bonamy & al, 06) 2- Effect of disorder…
2D 3D
(Meade & Keer 84, Gao & Rice 89) Stabilizing term 2- Effect of disorder…
M(f(z),z) 2- Effect of disorder…
F Edwards-Wilkinson model Non local elastic restoring force 2- Effect of disorder…
Depinning transition: order parameter V control parameter K I 0 (K I 0 -K Ic ) (K I 0 -K Ic ) V KI0KI0 K Ic ~ Stable Propagating 2- Effect of disorder…
Depinning: line in a periodic potential f(x=0,t=0)=0 x f0f0 F Pulling force Obstacle force f f=0 F T? V (F-F m ) 2- Effect of disorder…
2D =0.39 (A. Rosso & W. Krauth & O. Duemmer) z z+ z f(z)f(z) x t t+ t
In plane projection of crack front (Movchan, Gao & Willis 98) Out of plane projection of crack front X Z f(z) z y h(z) 2- Effect of disorder…
Local symmetry principle K II =0 Crack trajectory ≈ 0.4 ≈ 0.5 ≈ / ~ 0.8 (Bonamy et al, 06) 2- Effect of disorder…
f(z) Out-of-plane Projection on the yz plane In-plane Projection on the xz plane 3- Experiments 3D
P.Daguier et al. (95) x 2D ≈ Experiments 3D
Aluminium alloy =0.77 3nm 0.1mm (M. Hinojosa et al., 98) Profiles perpendicular to the direction of crack propagation 3- Experiments 3D = 0.78 from 5nm to 0.5mm zz Profiles perpendicular to the direction of crack propagation ( z) (µm) = 0.77 Z max ( z) (µm) z (µm)
Aluminum alloy (SEM+Stereo) h/ x z/ x 1/ 3- Experiments 3D A+A+ B+B+ ΔxΔx ΔzΔz = 0.75 = 0.6 = / ~ 1.2 x y z h/ x z/ x 1/ Mortar Quasi-crystal (STM) h (Å) Δh 2D (Δz, Δx) = ( A ) 1/2 z/ x 1/ h/ x
Exceptions… Sandstone fracture surfaces log(P(f)) log(f) ≈0.47 (Boffa et al. 99) z P( h) h/( z) (Ponson at al. 07) ≈ Experiments 3D
« Model » material : sintered glass beads (Ponson et al, 06) Porosity 3 to 25% Grain size 50 to 200 m Vitreous grain boundaries Exceptions… 3- Experiments 3D
ζ =0.4 ± 0.05 β =0.5 ± 0.05 =ζ/β =0.8 ± independent exponents « Universal » structure function + Roughness at scales > Grain size 1/ (Ponson et al. 06) 3- Experiments 3D
R c increases with time x1x1 x S. Morel & al, PRE 2008 Rc(x 1 ) =0.75 =0.4 =0.79 =0.4 R c (x 1 ) R c (x 2 ) X 2 R c (x 2 )>R c (X 1 ) 3- Experiments 3D Mortar specimens
(K.J. Måløy & al) 3- Experiments: interfacial fracture
z(mm) x(mm) 3- Experiments: interfacial fracture 2D =0.63 2D = µm log( h( z)/ 0 ); 0 =1µm log( z/ 0 ); 0 =1µm 200µm (S. Santucci et al, EPL 2010)
x x x =28.1µm/s; a=3.5µm (K.J. Måløy et al. 06) Waiting time matrix: t=0 W(z,x)=0 t>0 W t+ t (z,x)=1+W t (z,x) if front in (z,x) Front location Spatial distribution of clusters (white) v(z,x)>10 3- Experiments: interfacial fracture
0.39µm/s≤ ≤40µm/s 1.7µm ≤a≤10µm C=3 Cluster size distribution Slope -1.6 (K.J. Måløy et al. 06) (D. Bonamy & al., 08) 3- Experiments: interfacial fracture
(S. Santucci & al., 08) 3- Experiments: interfacial fracture
Disorder roughnening Elastic restoring forces rigidity Undamaged material Transmission of stresses through long range undamaged material :long range interactions (1/r 2 ) very rigid line Transmission of stresses through a « Swiss cheese »: Screening of elastic interactions low rigidity 4- Discussion
Gradient percolation (A. Hansen & J. Schmittbuhl, 03) Z X Damage RFM gradient percolation process 3D = 3D = 2 /(1+2 )=4/5 ( RFM/3D =2) 4- Discussion
r « R c r » R c RcRc Damage zone scale Large scales: elastic domain =0.75, =0.6 =0.4, =0.5 ? 4- Discussion
3 regions on a fracture surface: 1 Linear elastic region =0.4 =0.5/log 2 Intermediate region: within the FPZ Damage = « perturbation » of the front (screening) =0.8 =0.6 direction of crack propagation 3 Cavity scale: isotropic region Size of the FPZ - Direction of crack propagation within FPZ - Damage spreading reconstruction Fracture of an elastic solid is a dynamic phase transition 4- Discussion
Questions A model in the PFZ? How to reconcile line model and percolation gradient model ? Size of FPZ? Reliable measurements? Direct measurement of the disorder correlator Dynamics of crack propagation in 3D? Radiation damage? Breaking liquids…
Thank you!
(S. Santucci et al., 07) R k ( x)/R k G Log 10 ( x/ 0 ) PMMA ≈ 50µm x/ 0 h k ( x)/R k G PMMA ≈ Statistical characterization of fracture 3.2- Interfacial fracture
(Salminen et al, EPL06) Peel-in (paper) 3- Statistical characterization of fracture
Gutenberg-Richter exponent 3- Statistical characterization of fracture 3.2- Interfacial fracture
Omori’s law Slope Interfacial fracture 3- Statistical characterization of fracture
(A. Marchenko et al., 06) 3.2- Interfacial fracture 3- Statistical characterization of fracture
Humid air n-tetradecane
Humid air Tetradecane 3.2- Interfacial fracture 3- Statistical characterization of fracture
Magnitude Approximate energy radiated (10 15 J) Number of earthquakes San Andreas fault (J. Sethna et al) 3.2- Interfacial fracture 3- Statistical characterization of fracture
AE measurements on mortar (B. Pant, G. Mourot et al., 07) Energy distribution Log(E/E max ) Log(N(E)) P(E) E Fracture of three-dimensional solids 3- Statistical characterization of fracture
P(E) E P(E) E AE measurements on polymeric foams (S. Deschanel et al., 06) 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture
Al alloy Ni-plated BS SEM (E.B. et al., 89) r/ C(r) r ≈ Fracture of three-dimensional solids 3- Statistical characterization of fracture
Profiles perpendicular to the direction of crack propagation 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture
= 0.78 from 5nm to 0.5mm zz Profiles perpendicular to the direction of crack propagation ( z) (µm) (P. Daguier & al., 96) 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture
Aluminium alloy =0.77 3nm 0.1mm = 0.77 Z max ( z) (µm) z (µm) (M. Hinojosa et al., 98) Profiles perpendicular to the direction of crack propagation 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture
(J. Schmittbuhl et al, 95) Profiles perpendicular to the direction of crack propagation: granite ≈0.8 ≈ Fracture of three-dimensional solids 3- Statistical characterization of fracture
z (µm) direction of crack front x (µm) direction of crack propagation Anisotropy of fracture surfaces ~ 0.8 ~ 0.6 Direction of crack propagation Direction of crack front Log(Δx), log(Δz) Log (Δh) L. Ponson, D. Bonamy, E.B. (05) Fracture of three-dimensional solids 3- Statistical characterization of fracture
Exceptions… Sandstone fracture surfaces log(P(f)) log(f) ≈0.47 (Boffa et al. 99) z P( h) h/( z) (Ponson at al. 07) 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture
« Model » material : sintered glass beads (Coll. H. Auradou, J.-P. Hulin & P. Vié 06) Porosity 3 to 25% Grain size 50 to 200 m Vitreous grain boundaries Linear elastic material 3.3- Fracture of three-dimensional solids 3- Statistical characterization of fracture Exceptions…
1/ z ζ =0.4 ± 0.05 β =0.5 ± 0.05 z = ζ / β = 0.8 ± independent exponents « Universal » structure function + Roughness at scales > Grain size (Ponson et al. 06) 3- Statistical characterization of fracture
Summary Cracks and fracture surfaces are self-affine: -Thin sheets ≈0.6 at scales > - Interfacial fracture ’ ≈0.6 at scales < - 3D solid out-of-plane perpendicular to crack propagation ≈0.75 (5 decades!) - Out-of-plane parallel to the direction of crack propagation ≈0.6 - In-plane ’ ≈ Statistical characterization of fracture
f(z) Out-of-plane Projection on the yz plane In-plane Projection on the xz plane 3.3- Fracture of 3D specimens 3- Statistical characterization of fracture
P.Daguier et al. (95) x ’≈ Fracture of 3D specimens 3- Statistical characterization of fracture
Out-of-plane roughness measurements Polishing 3.3- Fracture of 3D specimens 3- Statistical characterization of fracture
Al alloy Ni-plated BS SEM (E.B. et al., 89) r/ C(r) r ≈ Fracture of 3D specimens 3- Statistical characterization of fracture
(J. Schmittbuhl et al, 95) Profiles perpendicular to the direction of crack propagation: granite ≈0.8 ≈ Fracture of 3D specimens 3- Statistical characterization of fracture
z (µm) direction of crack front x (µm) direction of crack propagation Anisotropy of fracture surfaces ~ 0.8 ~ 0.6 Direction of crack propagation Direction of crack front Log( Δ x), log( Δ z) Log ( Δh ) L. Ponson, D. Bonamy, E.B. (05) Fracture of 3D specimens 3- Statistical characterization of fracture
Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-cristaux (STM) 130mm Δh 2D (Δz, Δx) = ( A ) 1/2 h (nm) z (nm) AB ΔxΔx ΔzΔz L. Ponson et al, PRL 2006 L. Ponson et al, IJF 2006 h/ x z/ x 1/ z = 0.75 = 0.6 Z = / ~ 1.2 z
Béton (Profilométrie) Glass (AFM) Alliage métallique (SEM+Stéréoscopie) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm Quasi-crystals Courtesy P. Ebert Coll. D.B., L.P., L. Barbier, P. Ebert z z = 0.75 = 0.6 z = / ~ 1.2 h (Å) 4- Statistical characterization of fracture
Béton (Profilométrie) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert 4- Statistical characterization of fracture
Mortar (Profilometry) Glass (AFM) Aluminum alloy (SEM+Stereo) Quasi-crystals (STM) Δh 2D (Δz, Δx) = ( A ) 1/2 AB ΔxΔx ΔzΔz 130mm = 0.75 = 0.6 z = / ~ 1.2 h/ x z/ x 1/ z Mortar (Coll. S. Morel & G. Mourot) h (Å) Coll. D.B., L.P., L. Barbier, P. Ebert
Mortar (Profilometry) Glass (AFM) Metallic alloy (SEM+Stereo) Quasi-crystals (STM) AB ΔxΔx ΔzΔz 130mm z/ x 1/z ( l z / l x ) 1/ ( z/ l z )/( x/ l x ) 1/ z h/ x ( h/ l x )/( x/ l x ) Universal structure function Very different length scales h (Å) Coll. D.B.,L.P.,L. Barbier,P. Ebert 4- Statistical characterization of fracture
Exponent 1mm Preliminary results (G. Pallarès, B. Nowakowski et al., 08) 4- Statistical characterization of fracture
Exceptions… Sandstone fracture surfaces log(P(f)) log(f) ≈0.47 (Boffa et al. 99) z P( h) h/( z) (Ponson at al. 07)
ζ =0.4 ± 0.05 β =0.5 ± 0.05 z =ζ/β =0.8 ± independent exponents « Universal » structure function + Roughness at scales > Grain size 1/ z (Ponson et al. 06) 4- Statistical characterization of fracture
1D crack in a 2D sample 4.1- Random Fuse Models L. De Arcanglis et al, Stochastic models of failure
(E. Hinrichsen et al. 91) ≈0.7 =2/3 ? 4.1- Random Fuse Models 4- Stochastic models of failure (P.Nukala et al. 05)
(P.Nukala et al. 06) (G. Batrouni & A. Hansen, 98) = =0.52 Minimum energy surface ≈0.41 (A. Middleton, 95 Hansen & Roux, 91) ≈0.5 Fracture surface=juxtaposition of rough damage cavities ( Metallic glass, E.B. et al, 08) 4.1- Random Fuse Models
s P(E) E -1.8 E s ≈1.3 Avalanche size distribution (S. Zapperi et al.05) 4.1- Random Fuse Models 4- Stochastic models of failure