TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

Status of TRI P Rotary Visit to KVI 30 januari 2004 Klaus Jungmann.
TRI  P Presentation to KVI Beleidscollege 9 May 2002 K. Jungmann.
TRI  P presentatie voor RUG College van Bestuur 17 februari 2003 Klaus Jungmann.
TRI  P presentatie voor KVI medewerkers 14 februari 2002 Klaus Jungmann Ad van den Berg Sytze Brandenburg.
First Year Seminar: Strontium Project
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Ra-225: The Path to a Next Generation EDM Experiment
Search for the Schiff Moment of Radium-225
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Rydberg & plasma physics using
May Chuck DiMarzio, Northeastern University ECE-1466 Modern Optics Course Notes Part 9 Prof. Charles A. DiMarzio Northeastern University.
electrostatic ion beam trap
Institute of Atomic and Molecular Science, IAMS, Taiwan, ROC Wang-Yau Cheng, Chien-Ming Wu, Tz-Wei Liu and Yo-Huan Chen Progressive report on portable.
General Properties of Light Light as a wave Speed Wave properties: wavelength, frequency, period, speed, amplitude, intensity Electromagnetic wave.
Generation of short pulses
Quantum Computing with Trapped Ion Hyperfine Qubits.
 : TRI  P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics TRIX: Trapped Radium Ion eXperiments Oscar Versolato.
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Testing the Penning trap (operated as a Paul trap)
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
M.D. Seliverstov February 2013 CERN 1st LA³NET Topical Workshop on Laser Based Particle Sources
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
Status of TRI  P Programme Advisory Committee To KVI 20 November 2003 Klaus Jungmann.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Collinear laser spectroscopy of 42g,mSc
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Polarized 11 Li beam at TRIUMF and its application for spectroscopic study of the daughter nucleus 11 Be 1. Physics motivation new  delayed decay spectroscopy.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Progress of the Laser Spectroscopy Program at Bridgewater State College Greg Surman, Brian Keith, and Edward Deveney Department of Physics, Bridgewater.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
Neutral atom nuclear EDM Experiments Investigating Radium Lorenz Willmann KVI, Groningen ECT* Trento, June 21-25, 2004.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Parity violation in one single trapped radium ion Lotje Wansbeek Theory Group, KVI University of Groningen, The Netherlands ECT* Workshop “The lead radius.
Optical Pumping Simulation of Copper for Beta-NMR Experiment Julie Hammond Boston University ISOLDE, CERN
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Nuclear moments and charge radii of Mg isotopes from N=8 up to (and beyond) N=20 Univ. Mainz: M. Kowalska, R. Neugart K.U.Leuven: D. Borremans, S. Gheysen,
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Laser spectroscopy and beta-NMR for nuclear physics and applications Magdalena Kowalska CERN, PH-Dept Laser spectroscopy setups at ISOLDE Example – COLLAPS.
Rydberg atoms part 1 Tobias Thiele.
Study of possible ablations ion beams Daniele Scarpa LNL - INFN.
Date of download: 7/14/2016 Copyright © 2016 SPIE. All rights reserved. Energy level diagram of a Λ-type atomic system. For Rb87, ∣ 1→F′=2, ∣ 2→F′=1, ∣
A single trapped Ra+ Ion to measure Atomic Parity Violation
Beryllium ions in segmented Paul trap
Heavy Ion Nuclear Physics Lab. Yukari MATSUO
Presentation transcript:

TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline Earth Elements Outlook

Production Target RFQ Cooler Optical Trap Beyond The Standard Model TeV Physics TRI  P Facility AGOR Magnetic Separator Atomic Physics Nuclear Physics Particle Physics Energy: MeVeVneV Ion Catcher keV Separator commissioning Successful A Rogachevskiy RFQ prototype test and simulations E Traykov Charge exchange at low energies L Willmann G P Berg, U Dammalapati, P G Dendooven, O Dermois, G Ebberink, M N Harakeh, R Hoekstra, L Huisman, K Jungmann, H Kiewiet, R Morgenstern, G Onderwater, A Rogachevskiy, M Sanchez-Vega, M Sohani, M Stokroos, R Timmermans, E Traykov, L Willmann and H W Wilschut TRIµP – Trapped Radioactive Isotopes: µ-laboratories for fundamental Physics

 - angular correlations in nuclear  -decay Suitable isotope 21 Na p, q  1MeV/c  260 a.u. E recoil = (p + q) 2 /2M recoil  100 eV  3.6 a.u. p q J Double differential decay probability: Na  -decay

Violation of T-Symmetry H= -(d.E+µ.B) d - EDM µ - magnetic dipole moment I - Nuclear spin Limit for nuclear EDM Hg d< 2.1 x 10 –28 e cm M. V. Romalis et al. Phys.Rev.Lett. 86, 2505 (2001) Radium: Excellent candidate V. A. Dzuba et al. Phys. Rev.A (2000) EDMs violate - Parity - Time Reversal

Radium Atomic Structure nm 714 nm 7s 2 1 S 0 7s 7p 1 P 1 7s 7p 3 P 7s 6d 1 D 2 7s 6d 3 D nm 1488 nm  2.8  m Energy level data: E. Rasmussen, Z. Phys. 86, 24 (1933) and 87, 607 (1934); H.N. Russel, Phys. Rev. 46, 989 (1934) Calculations done by K Pachuki and Flaumbam, Dzuba et al. Lifetime measurement Energy level spacing Hyperfine structure Needed for atomic structure calculations Spectroscopy of P and D states

Heavy Alkaline Earth Element: Barium  – 8.4nsec I s =14mW/cm Life time measurement Hyperfine structure Laser cooling of barium Develop trapping strategy nm 6s 2 1 S 0 6s 6p 1 P 1 6s 5d 1 D 2 6s 6p 3 P nm 1499 nm 6s 5d 3 D  3  m 1108 nm  – 1.4 µsec I s =30µW/cm nm Spectroscopy of P and D states

Verdi pump at 532 nm Collimator Ba Oven 500  C PD M1 BS Dye Laser Power Stabilization PMT AOM Optical fiber from nm diode laser nm Coherent 699 Single mode dye laser BB /2

138 Ba 137 Ba F=5/2 138 Ba 135 Ba 136 Ba in Polarization plane  Polarization plane Fluorescence at nm from different Ba isotopes Counts [kHz] PMT Counts [kHz] Frequency [MHz]

Hanle effect Life time of 1 P 1 state P laser  B field  eff = h/(2  g J   B 1/2 )  eff = 8 nsec  0.5sec 138 Ba 136 Ba 138 Ba 136 Ba Counts [kHz] Magnetic Field [G]

553.7 nm nm 6s 2 1 S 0 6s 6p 1 P 1 6s 6p 3 P 1 6s 5d 3 D  3  m 1.4 µsec 8.4 nsec 40% 60% Creation of intense beam of meta-stable D-state atoms Intercombination line 1 S 0 – 3 P 1

FM Saturated absorption spectroscopy of I 2 Diode Laser nm I 2 Oven (560ºC) M1 M3 BS PD Lock-In Amp Feedback Control VCO /4 AOM To Beat note Lock point Reference Line P(52)(0-15) transition f=f 0 +f 1 Sin(wt) w=90.5kHz 599 MHz away from 1 S 0 – 3 P 1 in 138 Ba

Hyperfine Splitting of 1 S 0 – 3 P 1 transition in an External Magnetic field  = g J µ m J B  IS = 138 Ba– 136 Ba= (3) MHz 2.3 MHz

Outlook Diode Laser for 1 P 1 – 1 D 2 and for 1 P 1 – 3 D 2 and 1 P 1 – 3 D 1 Towards Radium for 1 S 0 – 1 P 1 transition by frequency doubling Ti:Sapp Laser Production of Radium at TRIµP by end of 2004 Spectroscopy in a Radium beam Laser Cooling of Barium

Producing light for Ra 1 S P 1 transiton Second harmonic generation in linear cavity using KNbO 3 (b-cut, 19°) 3 or 5mm; temperature tunable and high efficiency Wavelength tunable from 480 nm (10°C) to 490 nm (40°C) M1 M2 Telescope BS Split PD PZT R=-50mm, HR485 nm & 970 nm Faraday Isolator Ti:Sapp Dichroic Mirror KNb0 3 HR AR Blue output