TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI P Facility Lasers for Na -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline Earth Elements Outlook
Production Target RFQ Cooler Optical Trap Beyond The Standard Model TeV Physics TRI P Facility AGOR Magnetic Separator Atomic Physics Nuclear Physics Particle Physics Energy: MeVeVneV Ion Catcher keV Separator commissioning Successful A Rogachevskiy RFQ prototype test and simulations E Traykov Charge exchange at low energies L Willmann G P Berg, U Dammalapati, P G Dendooven, O Dermois, G Ebberink, M N Harakeh, R Hoekstra, L Huisman, K Jungmann, H Kiewiet, R Morgenstern, G Onderwater, A Rogachevskiy, M Sanchez-Vega, M Sohani, M Stokroos, R Timmermans, E Traykov, L Willmann and H W Wilschut TRIµP – Trapped Radioactive Isotopes: µ-laboratories for fundamental Physics
- angular correlations in nuclear -decay Suitable isotope 21 Na p, q 1MeV/c 260 a.u. E recoil = (p + q) 2 /2M recoil 100 eV 3.6 a.u. p q J Double differential decay probability: Na -decay
Violation of T-Symmetry H= -(d.E+µ.B) d - EDM µ - magnetic dipole moment I - Nuclear spin Limit for nuclear EDM Hg d< 2.1 x 10 –28 e cm M. V. Romalis et al. Phys.Rev.Lett. 86, 2505 (2001) Radium: Excellent candidate V. A. Dzuba et al. Phys. Rev.A (2000) EDMs violate - Parity - Time Reversal
Radium Atomic Structure nm 714 nm 7s 2 1 S 0 7s 7p 1 P 1 7s 7p 3 P 7s 6d 1 D 2 7s 6d 3 D nm 1488 nm 2.8 m Energy level data: E. Rasmussen, Z. Phys. 86, 24 (1933) and 87, 607 (1934); H.N. Russel, Phys. Rev. 46, 989 (1934) Calculations done by K Pachuki and Flaumbam, Dzuba et al. Lifetime measurement Energy level spacing Hyperfine structure Needed for atomic structure calculations Spectroscopy of P and D states
Heavy Alkaline Earth Element: Barium – 8.4nsec I s =14mW/cm Life time measurement Hyperfine structure Laser cooling of barium Develop trapping strategy nm 6s 2 1 S 0 6s 6p 1 P 1 6s 5d 1 D 2 6s 6p 3 P nm 1499 nm 6s 5d 3 D 3 m 1108 nm – 1.4 µsec I s =30µW/cm nm Spectroscopy of P and D states
Verdi pump at 532 nm Collimator Ba Oven 500 C PD M1 BS Dye Laser Power Stabilization PMT AOM Optical fiber from nm diode laser nm Coherent 699 Single mode dye laser BB /2
138 Ba 137 Ba F=5/2 138 Ba 135 Ba 136 Ba in Polarization plane Polarization plane Fluorescence at nm from different Ba isotopes Counts [kHz] PMT Counts [kHz] Frequency [MHz]
Hanle effect Life time of 1 P 1 state P laser B field eff = h/(2 g J B 1/2 ) eff = 8 nsec 0.5sec 138 Ba 136 Ba 138 Ba 136 Ba Counts [kHz] Magnetic Field [G]
553.7 nm nm 6s 2 1 S 0 6s 6p 1 P 1 6s 6p 3 P 1 6s 5d 3 D 3 m 1.4 µsec 8.4 nsec 40% 60% Creation of intense beam of meta-stable D-state atoms Intercombination line 1 S 0 – 3 P 1
FM Saturated absorption spectroscopy of I 2 Diode Laser nm I 2 Oven (560ºC) M1 M3 BS PD Lock-In Amp Feedback Control VCO /4 AOM To Beat note Lock point Reference Line P(52)(0-15) transition f=f 0 +f 1 Sin(wt) w=90.5kHz 599 MHz away from 1 S 0 – 3 P 1 in 138 Ba
Hyperfine Splitting of 1 S 0 – 3 P 1 transition in an External Magnetic field = g J µ m J B IS = 138 Ba– 136 Ba= (3) MHz 2.3 MHz
Outlook Diode Laser for 1 P 1 – 1 D 2 and for 1 P 1 – 3 D 2 and 1 P 1 – 3 D 1 Towards Radium for 1 S 0 – 1 P 1 transition by frequency doubling Ti:Sapp Laser Production of Radium at TRIµP by end of 2004 Spectroscopy in a Radium beam Laser Cooling of Barium
Producing light for Ra 1 S P 1 transiton Second harmonic generation in linear cavity using KNbO 3 (b-cut, 19°) 3 or 5mm; temperature tunable and high efficiency Wavelength tunable from 480 nm (10°C) to 490 nm (40°C) M1 M2 Telescope BS Split PD PZT R=-50mm, HR485 nm & 970 nm Faraday Isolator Ti:Sapp Dichroic Mirror KNb0 3 HR AR Blue output