Results from the ANTARES Deep Sea Neutrino Telescope Maurizio Spurio On behalf of the ANTARES Collaboration Università di Bologna and INFN M.Spurio-MG13.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
Longitude Latitude A recent analysis of the Fermi-LAT data by M. Su et al. [1] revealed two large spherical structures centered by our Galactic Center.
C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July The ANTARES Underwater Neutrino Telescope C.W. James, ECAP, University.
ANTARES and KM3NeT John Carr Centre de Physique de Particules de Marseille IN2P3 / MICINN meeting Madrid, 12 Jan 2009.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
SEARCHES for STEADY SOURCES of COSMIC NEUTRINOS in ANTARES J. P. Gómez-González, on behalf of the ANTARES Collaboration IFIC (CSIC-Universitat de València)
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
Search for point sources of cosmic neutrinos with ANTARES J. P. Gómez-González IFIC (CSIC-Universitat de València) The ANTARES.
Ersilio Castorina - Exotic Phys. with nu Telescopes, Uppsala Sept Exotic Physics searches in ANTARES Ersilio Castorina Pisa University and INFN.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
The ANTARES detector status and results A.Margiotta
By Nicolas PICOT-CLEMENTE CNRS/CPPM, Marseille ANTARES experiment status and first results …
Maurizio Spurio Department of Physics and INFN – Bologna 1 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Neutrino telescopes in the Mediterranean sea Marco Anghinolfi INFN-Genova on behalf of the ANTARES Collaboration HEP2012 Vlaparaiso, January 2012 The ANTARES.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
Susan Cartwright IDM2000 ANTARES : vStatus u site evaluation u demonstrator u detector design vProspects u physics aims u neutralino detection status and.
The ANTARES experiment in the Mediterranean sea: overview and first results 14 th Lomonosov conference on Elementary Particle physics Aug 2009 Moscow.
4. Einstein Angle and Magnification The angular deflection for a relativistic neutrino with mass m ʋ that passes by a compact lens of mass M with impact.
Antares Neutrino Telescope Jean-Pierre Ernenwein Université de Haute Alsace (On behalf of the ANTARES collaboration) Rencontres de Moriond, 13/03/2005.
Neutrino Point Source Searches with IceCube 22 String Configuration Michael Baker, for the IceCube Collaboration University of Wisconsin, Madison APS April.
Agustín Sánchez-Losa IFIC (CSIC-Universitat de València) Transient sources, like AGNs or Gamma Ray Bursters, are among.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
The ANTARES Deep Sea Neutrino Telescope CRIS2010, 14th Sept 2010 CRIS2010, 14th Sept 2010 Paschal Coyle Centre de Physique des Particules de Marseille.
Dorothea Samtleben Leiden University / NIKHEF, Amsterdam.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
1 Recent Results from the ANTARES Neutrino Telescope Salvatore Mangano (IFIC/CSIC-Valencia) On behalf of the ANTARES Collaboration.
The ANTARES neutrino telescope is located on the bottom of the Mediterranean Sea, 40 km off the French coast. The detector is installed at a depth of 2.5.
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
The IceCube Neutrino Observatory is a cubic kilometer detector at the geographic South Pole. We give an overview of searches for time-variable neutrino.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
ANTARES Results-Venezia Introduction.  astronomy 2. ANTARES. Optical detection. Infrastructure 3. Downgoing muons 4. Preliminary  data 5. Exotica.
The ANTARES Neutrino Telescope and its Dark Matter Capabilities
PHY418 Particle Astrophysics
V. Bertin - CPPM - MANTS Paris - Sept'10 Indirect search of Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
IceCube & ANTARES Constraints to the IceCube signal from ANTARES & Combined Point Source Analysis IceCube/ANTARES J. Brunner CPPM 20/01/2015.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Longitude Latitude A recent analysis of the Fermi-LAT data by M. Su et al. [1] revealed two large spherical structures centered by our Galactic Center.
Status report on the Antares project Luciano Moscoso (DSM/DAPNIA, CEA/Saclay F Gif-sur-Yvette) (On behalf of the ANTARES collaboration)
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 3-9 August 2014ANTARES diffuse flux.
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
The end of the electromagnetic spectrum
Low energy option for KM3NeT Phase 1? KM3NeT-ORCA (Oscillation Research with Cosmics in the Abyss) P. Coyle, Erlangen 23 June 2012.
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Response of the KM3NeT detector to neutrinos from Fermi bubbles.
Stéphanie ESCOFFIER CPPM Marseille, France on behalf of the ANTARES Collaboration research goals detector setup selected results summary.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
ANTARES Stato dell’esperimento Rinnovo del Memorandum di Understanding M.Anghinolfi : Responsabile nazionale dell’esperimento.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Imaging the Neutrino Universe with AMANDA and IceCube
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Systematic uncertainties in MonteCarlo simulations of the atmospheric muon flux in the 5-lines ANTARES detector VLVnT08 - Toulon April 2008 Annarita.
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
Claudio Bogazzi * - NIKHEF Amsterdam ICRC 2011 – Beijing 13/08/2011
Presentation transcript:

Results from the ANTARES Deep Sea Neutrino Telescope Maurizio Spurio On behalf of the ANTARES Collaboration Università di Bologna and INFN Stokolm

2 SNR  oscillations dark matter  -quasars GRBs magnetic Fermi-bubbles monopole Science with Deep Sea Neutrino Telescopes High energy neutrino astrophysics: galactic: SN, SNRs,  -quasars, molecular clouds, etc… extra-galactic: AGNs, GRBs, choked-GRBs, GZK, etc.... Search for New Physics: Dark matter (Sun, Galatic Centre), Monopoles, nuclearites, ?? Earth-Sea Science: oceanography, sea biology, seismology, environmental monitoring... GeV-100 GeVGeV-TeVTeV-PeVPeV-EeV > EeV Stokolm

Neutrinos and Multi-Messenger Astronomy Protons/ Cosmic Rays: Detected on Earth up to extremely high energies: 10 8 TeV Hard to study sources due to deflection by magnetic fields Photons: Produced in leptonic (synchrotron, IC) and hadronic (  0 ) processes Absorbed at higher energies and large distances Neutrinos (and GW): Unambiguous signature of hadronic acceleration Not deflected by magnetic fields or absorbed by dust Horizon not limited by interaction with CMB/IR Can escape from region of high matter density Can be time correlated with optical signals  leptonic vs hadronic models  identify Galactic and extraGalactic cosmic ray sources  hadronic accelerators exist, but where? 3 Stokolm

Cosmic Rays, photons and neutrinos Hadronic cascades (as for atmospheric showers) p/A + p/                       e   e   e   e   Primary acceleration («Bottom-Up») Stochastics shocks (Fermi mechanism) Explosion /Accretion / Core collapse Benchmark Extra Gal. flux Waxman-Bahcall But HE  also from electromagnetic processes Synchrotron Inverse Compton e :  :  =1:2:0 source e :  :  =1:1:1 Earth ~ 500 events /yr/ km 2 Stokolm

5  42° interaction Sea floor Cherenkov light from  3D PMT array  - Main channel:  interaction giving an ultra-relativistic  ( e and  also) - Energy threshold ~ 20 GeV- 24hr operation, more than half sky coverage The reconstruction is based on local coincidences compatible with the Cherenkov light front Detection Principle  p    p, 

Physical Background sources Atmospheric  10 9 per year Atmospheric  10 4 per year Cosmic  0-10 per year ? Atmospheric muons: only downgoing Shield detector & reject downward goingmuons downgoing upgoing T. Chiarusi, M.S. Eur. Phys. Journal C (2010) T. Chiarusi, M.S. Eur. Phys. Journal C (2010) arXiv: Stokolm

7 7  CPPM, Marseille  DSM/IRFU/CEA, Saclay  APC, Paris  LPC, Clermont-Ferrand  IPHC, Strasbourg  Univ. de H.-A., Mulhouse  LAM, Marseille  COM, Marseille  GeoAzur Villefranche  INSU-Division Technique  Univ./INFN of Bari  Univ./INFN of Bologna  Univ./INFN of Catania  LNS–Catania  Univ./INFN of Pisa  Univ./INFN of Rome  Univ./INFN of Genova  IFIC, Valencia  UPV, Valencia  UPC, Barcelona  NIKHEF,  Amsterdam  Utrecht  KVI Groningen  NIOZ Texel  ITEP,Moscow  Moscow State Univ  University of Erlangen Bamberg Observatory Bamberg Observatory Univ. of Wurzeburg Univ. of Wurzeburg  ISS, Bucarest The ANTARES Collaboration 8 countries 31 institutes ~150 scientists+engineers  LPRM, Oujda

8 The ANTARES Site & Infrastructure Shore Station IFREMER Toulon Centre FOSELEV Marine -2475m 40 km submarine cable

70 m 450 m JunctionBox Interlink cables 40 km to shore 2500m ~20 Mton instr vol inch PMTs 12 lines 25 storeys/line 3 PMTs / storey The ANTARES Detector Stokolm

– 2008: Building phase of the Detector Junction box 2001 Main cable 2002 Line 1, Line 3, 4, 5 01 / 2007 Line 6, 7, 8, 9, / 2007 Line 11, / 2008 ~70 m

11 Earth and Sea Sciences Instrumentation module Seismograph Connected 30 Oct 2010 Secondary Junction Box O2, CTD, P BioCam Currentmeter Turbidity

12 reconstructed up-going neutrino detected in 6/12 detector lines: Up- and down-going Events reconstructed down-going muon detected in all 12 detector lines:

13 Region of Sky Observable by Neutrino Telescopes Mkn 501 Mkn 421 CRAB SS433 Mkn 501 RX J GX339-4 SS433 CRAB VELA Galactic Centre IceCube (South Pole) ANTARES(43° North)  Emphasis on study of Galactic sources

14 Selected ANTARES physics results 1.Cosmic sources searches 2.Diffuse flux from ExtraGalactic sources 3.Multimessenger approach and Gravitational Waves coincidences 4.Neutrino oscillations

15 1. Point Source Search Neutrino candidates: Upgoing particles Background for neutrinos: mis-reconstructed atmospheric muons Track fit quality used to reject mis-reconstructed downgoing muons Number of hits used as estimator of muon (~neutrino) energy upgoing Number of up-going events as a function of the track quality parameter  Angular distribution of well- reconstructed tracks

16 1. Angular Resolution for Neutrinos  Full 12 line detector cumulative distribution of the angle between the true neutrino track and the reconstructed muon event (assuming E -2 spectrum). The median is 0.46° 83% of the events within 1°

. 1. Full-Sky Search ( ) Most significant cluster at: RA = ‒ 46.5°, δ= ‒ 65.0° N sig = 5 p-value=0.026 (post-trial) Significance = 2.2 σ Sky map in equatorial coordinates (3058 candidates) Results compatible with the background hypothesis 3⁰ 1⁰ Pre-trial prob Stokolm

1. Source Candidate List Look in the direction of a list of 51 predefined candidate sources (selection of sources mostly based on γ-ray flux and visibility) HESS J1023 ‒ 575 most signal -l ike, p – value 41% (post trial) Compatible with the background hypothesis First eleven sources sorted by p-value. Last column shows the 90% CL upper limit on the flux (E / GeV) -2 GeV -1 cm -2 s -1 Stokolm

1. Candidate List Search – 90%CL Limits Assumes E -2 flux for a possible signal ANTARES has the most stringent limits for the Southern Sky Galactic sources expected to have energy cutoff- not visible to IceCube 2016: expect limits to improve by another factor ~2.5 ANTARES 2016 Stokolm

20 2. Diffuse  flux E 2  (E) 90% = 5.3×10 -8 GeV cm -2 s -1 sr TeV<E<2.5 PeV Phys. Lett. B696 (2011) IC40

21 2. Search for diffuse  from Fermi Bubbles For 100% hadronic models: E 2 dF /dE=1.2*10 -7 GeV cm -2 s -1 sr -1 E cutoff protons: 1PeV-10 PeV Background estimated from average of three ‘OFF’ regions (time shifted in local coordinates) Galactic coords Fermi-LAT data provided evidence of the emission of HE  rays with a high intensity E -2 spectrum from two large areas above and below the Galactic Center (the "Fermi bubbles"). A hadronic mechanism has been proposed for this  rays emission making the Fermi bubbles promising sources of high-energy neutrinos Detector coords

22 2. Search for Neutrinos from Fermi Bubbles Live time = 588 days Cuts optimised for best MRF and a cutoff at 100 TeV N back (OFF) = 90±5(stat)±3(sys) N signal (ON) = 75 No signal  exclude fully hadronic FB model without cutoff ( 90%CL F&C) Future: full dataset and improved energy estimator ANTARES preliminary ON ZONE dotted: model prediction solid: 90% CL limits 50 TeV cutoff 100 TeV cutoff 500 TeV cutoff no cutoff ANTARES preliminary

23 3. Multimessenger approach Strategy: higher discovery potential by observing different probes higher significance by coincidence detection higher efficiency by relaxed cuts GCN GRB Coord. Network: γ satellites Alerts Ligo/Virgo Gravitational waves: trigger + dedicated analysis chain TAROT ROTSE optical follow up: MoUs for joint research arXiv: arXiv: Astropart.Phys.35(2012) arXiv:

24 3. Search for GW coincident signal Common data taking Search strategy Instantaneous Antares+Ligo+Virgo common view V. V. Elewyck et al. Int.J.Mod.Phys. D18 (2009) B. Baret et al. Astropart.Phys. 35 (2011) 1-7 B. Baret et al. arXiv: DoneOn going 01

Dataset Analysis Distance within which there is a 90% detection probability with a 1% false alarm rate per neutrino I.Di Palma et al. TAUP 2011 B. Bouhou et al. arXiv: Sub-optimal detectors No dedicated optimisation NO DETECTION set limits on distance of occurrence of NS-BH and NS-NS mergers

3. Correlation with Gravitational Waves - plausible common sources (microquasars, SGR, GRBs) - discovery potential for ‘hidden’ sources (e.g. failed GRBs) ANTARES 5-line detector line detector adv LIGO/VRIGO 2007: No statistical significant correlation ⇒ set limits on distance of occurrence of NS-BH and NS-NS mergers First joint ANTARES/LIGO/VIRGO publication: arXiv: v : expect to constrain fraction of star collapses accompanied by coincident emission of jets beamed towards Earth Stokolm

4. Oscillations with Atmospheric Neutrinos L=2 R Earth cos , from track fit E from muon range Oscillations maximal at E =24 GeV for vertical neutrinos Dashed line: oscillation effect  Larger effect on single-line (low energy) than multi-line (higher energy) events E <100 GeV MC truth 27 Stokolm

3. Neutrino Oscillations: Track Selection Multi-line Single-line Select pure sample of atmospheric neutrinos (<5% muon contamination) using a cut on the track fit quality Blue: misreconstructed atmospheric muons Green: atmospheric neutrinos Red: neutrino with oscillations zenith angle resolution: 0.8 degrees for multi-line events 3 degrees for single-line events Stokolm

3. Neutrino Oscillations: Result ANTARES K2K Super-K MINOS data (863 days): No oscillation:  2 /NDF = 40/24 (2.1%) Best fit:  2 /NDF = 17.1/21 Δm 2 = eV 2 sin 2 2  =1.00 Assuming maximal mixing: Δm 2 =(3.1±0.9) eV 2 Systematics: (Absolute normalisation free) Absorption length: ±10% Detector efficiency: ±10% Spectral index of flux: ±0.03 OM angular acceptance Accepted by PLB: arXiv: %CL contours no osc best osc ANTARES preliminary 5% error on slope vs E R /cos R Stokolm

30 Summary  ANTARES infrastructure completed:  Only operating deep sea neutrino telescope  Largest neutrino telescope in the Northern hem.  Operating smoothly, maintenance capability proven  Good understanding of detector  Important testbed for KM3NeT R&D and software  Exciting and broad physics program ….  Unexplored regions of sensitivity for gal. sources  Steady/transient sources, monopoles, DM, oscillations …  multi-messenger approach (optical, satellite, GW)  Real-time readout and in-situ power capabilities a large program of multi-disciplinary activities: acoustics, biology, oceanography, seismology……  Major step towards the multi-kilometre cube deep-sea Neutrino telescope: KM3NeT

31 Spares

32 2 min Continuous baseline: Radioactivity in the sea ( 40 K) + bioluminescent bacteria Bursts: bioluminescence from Macroscopic organisms Counting Rates (short timescale) 40 K

33 Acoustic Positioning Storey 1 Storey 8 Storey 14 Storey 20 Storey 25 Radial displacement Precision ~ few cms Measure every 2 min: Distance line bases to 5 storeys/line and also storey headings and tilts

884 days live time ( ) 2.7 sigma significance Agrees with Monte Carlo expectations Absolute Pointing: Moon Shadow 34 Stokolm