M. Collados Instituto de Astrofísica de Canarias CASSDA School 20-25 Apr 2015 - Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School.

Slides:



Advertisements
Similar presentations
Definitions for polarimetry Frans Snik Sterrewacht Leiden.
Advertisements

Polarimetric shapes of spectral lines in solar observations Egidio Landi Degl’Innocenti Dipartimento di Fisica e Astronomia Università di Firenze, Italia.
2006/4/17-20 Extended 17 th SOT meeting Azimuth ambiguity resolution from dBz/dz M. Kubo (ISAS/JAXA), K. Shimada (University of Tokyo), K. Ichimoto, S.
Tutorial on Bayesian Techniques for Inference A.Asensio Ramos Instituto de Astrofísica de Canarias.
Learning from spectropolarimetric observations A. Asensio Ramos Instituto de Astrofísica de Canarias aasensio.github.io/blog.
Calibration-Diagnostics Spectral Photometric/Gain Polarimetric Empirical or hardware calibrators NIRSPC or G Disk or Corona.
10 -3 versus polarimetry: what are the differences? or Systematic approaches to deal with systematic effects. Frans Snik Sterrewacht Leiden.
Spectropolarimetry at THÉMIS Frédéric Paletou & Guillaume Molodij.
“ Spectropolarimetric investigation of the propagation of magnetoacoustic waves and shock formation in sunspot atmospheres” “ Spectropolarimetric investigation.
Polarimetry Christoph Keller. Polarimetry Requirements Polarization sensitivity: amount of fractional polarization that can be detected above a (spatially.
ViSP Polarimetry David Elmore HAO/NCAR
MOSS Spectroscopy Applications in Plasma Physics John Howard Plasma Research Laboratory Australian National University.
ATOMIC SPECTROMETRY 1. Flames 2. Electrothermal Atomizers 3. Plasmas.
1 Lites FPP-SP Initial Reduct SOT #17 Meeting, NAOJ, April Solar-B FPP Initial Data Reduction for the FPP Spectro- Polarimeter October, 2004 Bruce.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
FMOS Observations and Data 14 January 2004 FMOS Science Workshop.
AEOS Telescope + Image-Slicer/ Spectrograph Data Reduction and Results for June 8, 2006.
Polarization Calibration of HMI A. Norton, J. Schou, D. Elmore, J. Borrero, S. Tomczyk, G. Card + High Altitude Observatory National Center for Atmospheric.
Physics 681: Solar Physics and Instrumentation – Lecture 9 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
ATOMIC ABSORPTION AND ATOMIC FLUORESCENCE SPECTROMETRY Chap 9 Source Modulation Interferences in Atomic Absorption Interferences in Atomic Absorption Spectral.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Galaxy number count by using Optical images Supervisor :川崎涉 (Kawasaki Wataru) 潘國全 (Pan Kuo-Chuan)
UNNOFIT inversion V. Bommier, J. Rayrole, M. Martínez González, G. Molodij Paris-Meudon Observatory (France) THEMIS Atelier "Inversion et transfert multidimensionnel",
Spicule Family Tree Type I Type II Macrospicules Discovered in 2007 / Ca II H line km width typically km/s reduced opacity /fade from.
Apr 17-22, NAOJ Dopplergram from Filtergram (FG) Observation Y. Katsukawa (NAOJ) SOT Team.
Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710
Stellar Atmospheres II
A. Lagg - Abisko Winter School 1  The radiative transfer equation The radiative transfer equation  Solving the RTE Solving the RTE Exercise 1:Exercise.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
The reduction and analysis of spectra of B stars
Open a New Window of Plasma Diagnostics in the Solar Physics with Spectropolarimetric Observation HINODE June 10 th, 2014 Tetsu Anan (Kyoto.
J. Sánchez Almeida Instituto de Astrofísica de Canarias Magnetometry: set of techniques and procedures to determine the physical properties of a magnetized.
2005/11/086th Solar-B Science Supersonic downflows in the photosphere discovered in sunspot moat regions T. Shimizu (ISAS/JAXA, Japan),
Radiation In astronomy, the main source of information about celestial bodies and other objects is the visible light or more generally electromagnetic.
Spicule observed in He Å Solar seminar in 2009 April 20 Short : Tetsu Anan HAZEL Bueno et al Nuño et al , 2, 3,
Integral Field Spectroscopy. David Lee, Anglo-Australian Observatory.
A. Lagg - Abisko Winter School 1. A. Lagg - Abisko Winter School 2 Why Hinode?  spectra are easier to interpret than, e.g. CRISP (continuous WL coverage)
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
Calibration of the Polarization Property of SOT K.Ichimoto, Y.Suematsu, T.Shimizu, Y.Katsukawa, M.Noguchi, M.Nakagiri, M.Miyashita, S.Tsuneta (National.
Real-time Acquisition and Processing of Data from the GMRT Pulsar Back- ends Ramchandra M. Dabade (VNIT, Nagpur) Guided By, Yashwant Gupta.
Resolution Limits for Single-Slits and Circular Apertures  Single source  Two sources.
1 SOT Polarization Calibration -- method and results for FG -- K.Ichimoto and SOT Team SOT#
Measuring Magnetic fields in Ultracool stars & Brown dwarfs Dong-hyun Lee.
Inversions based on ME atmospheres Stokes inversions beyond ME atmospheres Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC) Granada, Spain.
1. Twist propagation in Hα surges Patricia Jibben and Richard C. Canfield 2004, ApJ, 610, Observation of the Molecular Zeeman Effect in the G Band.
A multiline LTE inversion using PCA Marian Martínez González.
Colin Folsom (Armagh Observatory).  Read input  Calculate line components (Zeeman splitting)  Calculate continuum opacity (per window, per atmospheric.
14 January Observational Astronomy SPECTROSCOPIC data reduction Piskunov & Valenti 2002, A&A 385, 1095.
DAO Observations and Instrumentation Jason Grunhut.
Measurements of Vector Magnetic Fields
COSMO Large Coronagraph Preliminary Design Review
Visible Spectro-polarimeter (ViSP) Conceptual Design David Elmore HAO/NCAR
Diagnostic capability of FG/SP Kiyoshi Ichimoto NAOJ Hinode workshop, , Beijing.
Calibration of Solar Magnetograms and 180 degree ambiguity resolution Moon, Yong-Jae ( 文 鎔 梓 ) (Korea Astronomy and Space Science Institute)
SHINE 2008 Vector Magnetic Fields from the Helioseismic and Magnetic Imager Steven Tomczyk (HAO/NCAR) Juan Borrero (HAO/NCAR and MPS)
2006/4/17-20 Extended 17 th SOT meeting M. Kubo (JAXA/ISAS), K. Ichimito, Y. Katsukawa (NAOJ), and SOT-team Comparison of FG and SP data from Sun test.
VFISV update and effects of the variation of HMI filter profiles on the inversions R. Centeno and S. Tomczyk Rebecca Centeno SDO SWG meeting -- Sept 9,
Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril.
Coronal Hole recognition by He 1083 nm imaging spectroscopy O. Malanushenko (NSO) and H.P.Jones (NASA's GSFC) Tucson, Arizona, USA Solar Image Recognition.
Focal Plane Instrumentation at Big Bear Solar Observatory
N. Shchukina1, A. Sukhorukov1,2, J. Trujillo Bueno3
ATOMIC ABSORPTION AND ATOMIC FLUORESCENCE SPECTROMETRY
Polarization in spectral lines
A new technique of detection and inversion
Chapter 13 – Behavior of Spectral Lines
Status of Equatorial CXRS System Development
Soothing Massage of HMI Magnetic Field Data
Reflection of light Albedo=reflected flux / incident flux.
Contents Introduction to the inversion code
106.13: A Makeover for HMI Magnetic Field Data
Presentation transcript:

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife DATA REDUCTION AND CALIBRATION M. Collados

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife DATA REDUCTION AND CALIBRATION + Some notions on the Radiative Transfer Equation and Inversion Techniques

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 2 ferroelectric liquid crystals (TIP) δ 1 = 155º δ 2 = 75º θ 1 = 70º θ 2 = 155º Δθ = 50º Polarimetric techniques 4 independent modulation states Fixed retardances θ 2 = θ 2 (Voltage) θ 1 = θ 1 (Voltage) Polarizer Polarizing beamsplitter

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Polarimetric techniques Why a polarizing beamsplitter instead of a polarizer? Spatial modulation (Dual beam) Temporal modulation (Single beam)

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Polarimetric techniques Spatial modulation (Dual beam) Temporal modulation (Single beam) Seeing-induced crosstalk Flatfield-induced crosstalk

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Polarimetric techniques Temporal and Spatial modulation Beam exchange

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Reduction steps Bad pixel correction Dark current subtraction Flatfield correction Telescope + polarimeter calibration Demodulation + Beam merging Residual fringes correction

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 1.- Bad pixel correction raw imageCorrected for bad pixels

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 2.- Dark current subtraction Important Same exposure time as observations

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3.- Flatfield correction CORRECTION FOR Line inclination Beam misalignment λ 1565 nm Important One flat per modulation state

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3.- Flatfield correction λ 1565 nm CORRECTION FOR Line inclination Beam misalignment Important One flat per modulation state

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3.- Flatfield correction λ 1565 nm Modulation state 1

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3.- Flatfield correction λ 1565 nm Modulation state 2

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3.- Flatfield correction λ 1565 nm Modulation state 3

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3.- Flatfield correction λ 1565 nm Modulation state 4

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 4.- Telescope + polarimeter calibration

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife { 4.- Telescope + polarimeter calibration

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Unknowns: 4.- Telescope + polarimeter calibration

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Residual crosstalk Q, U, V ↔ Q, U, V ≈ 1% 4.- Telescope + polarimeter calibration (IV)

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 5.- Demodulation + Beam merging T(t)D(t)D(t) T(t)1 N = T(t) I I = D(t) N // D(t) T(t) = 1 → →→→

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife On-line Stokes images visualization

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 6.- Demodulation + Beam merging Single beamDual beam I V

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 6.- Demodulation + Beam merging Single beamDual beam Q U

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 6.- Demodulation + Beam merging U Q IV

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Routines pro cal15650 lambda=15650.; polarimetric calibration filecal=['27apr14.005','27apr14.009','27apr14.012','27apr14.019', $ '28apr14.001','28apr14.005','28apr14.007', $ '29apr14.002','29apr14.005','29apr14.008','29apr14.011', $ '30apr14.000','30apr14.005','30apr14.008', $ '30apr14.013','30apr14.016', $ '01may14.002','01may14.005','01may14.007', $ '02may14.002','02may14.005','02may14.012', $ '02may14.016','02may14.019', $ '03may14.001','03may14.006','03may14.010','03may14.014', $ '03may14.017','03may14.025','03may14.029', $ '05may14.001','05may14.006'] get_teles,filecal,lambda=lambda,xtau=xtau,/verbose,/display return end

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Routines pro cal27apr14 ; data calibration xtau=[0.9917,174.02,1.0014,536.71] ; using all calib files ; 27 Apr - 5 May fileff=['27apr14.006'] filecal=['27apr14.005'] map='27apr14.000' gris,map,fileff,filecal,lambda=15650.,xtau=xtau,/xtalk return end

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Data handling and preparation prior to analysis (not included yet in standard routines) -Continuum rectification -Wavelength calibration -Stray light (and PSF) evaluation COMPARISON WITH FTS

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Line Identification

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Calculate dispersion

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Wavelength calibrated spectrum

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Continuum rectification 15th order polynomial FTS in redOBS in white

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Continuum rectification OBS in whiteFTS in red

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 2. Spectral Resolution + Stray Light σ teor = 56 mA

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 2. Spectral Resolution + Stray Light FTS in redOBS in white

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife All steps

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3. The radiative transfer equation Synthesis Inversion

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3. The radiative transfer equation   Intensity  Optical depth S Source function K Absorption matrix RTE (stationary and plane-parallel)

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3. The radiative transfer equation Unno-Rachkovsky equations observer LTE

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3. The radiative transfer equation Zeeman splitting

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3. The radiative transfer equation   Intensity  Optical depth S Source function K Absorption matrix O Evolution or extintion operator RTE (stationary and plane-parallel)

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 3. The radiative transfer equation Free parameters: B, θ, χ, B 0, B 1, η, Δλ d, a, v Mag. field Source function Line shape Line position with

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Profiles for different field strength

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Profiles for different field inclination

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Profiles for different field azimuth

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife  R X Response function 3. The radiative transfer equation Parameter perturbation RTE perturbation Perturbation solution

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Initial model T Synthesis I syn Observation I obs Perturbed profile δI = I syn - I obs Perturbed model δT 4. The RTE inversion

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Existence of solution? Unicity of solution? 4. The RTE inversion

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Least squares 4. The RTE inversion

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 5. The RTE inversion (SIR)

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 5. The RTE inversion (SIR)

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 6. Information obtained from spectral lines 1.- Temperature stratification 2.- LOS velocity stratification 3.- Magnetic field vector stratification 4.- Atomic parameters 5.- Element abundance

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife 6. Information obtained from spectral lines 1.- Temperature stratification 2.- LOS velocity stratification 3.- Magnetic field vector stratification 4.- Atomic parameters 5.- Element abundance

M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife Magnetic field Westendorp Plaza et al. (2001) 6. Information obtained from spectral lines