1. Graph the inequality y < 2x + 1.

Slides:



Advertisements
Similar presentations
Solving Quadratic Inequalities
Advertisements

DÉJÀ VU: Graphing Linear Inequalities
5.7 Quadratic Inequalities
Identifying Quadratic Functions
Grade 8 Algebra I Identifying Quadratic Functions
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Solving Linear Inequalities
2-7 Solving quadratic inequalities
Identifying Quadratic Functions
Solving Linear Inequalities
5.7 : Graphing and Solving Quadratic Inequalities
Objective Graph and solve systems of linear inequalities in two variables.
Objectives Solve quadratic inequalities by using tables and graphs.
Graphing & Solving Quadratic Inequalities 5.7 What is different in the graphing process of an equality and an inequality? How can you check the x-intercepts.
Give the coordinate of the vertex of each function.
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Math I UNIT QUESTION: What is a quadratic function? Standard: MM2A3, MM2A4 Today’s Question: How do you solve quadratic inequalities by algebra or a graph?
Holt Algebra Identifying Quadratic Functions 9-1 Identifying Quadratic Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
1 Warm Up 1.Solve and graph |x – 4| < 2 2. Solve and graph |2x – 3| > 1 2x – x 4 x – 4 > -2 and x – 4 < x > 2 and x < 6.
Warm Up 1. Graph the inequality y < 2x + 1. Solve using any method. 2. x 2 – 16x + 63 = x 2 + 8x = 3 7, 9.
6-7 Graphing and Solving Quadratic Inequalities
Unit 2 – Quadratic, Polynomial, and Radical Equations and Inequalities Chapter 5 – Quadratic Functions and Inequalities 5.8 – Graphing and Solving Quadratic.
Objectives Solve quadratic equations by graphing or factoring.
9-1 Quadratic Equations and Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
1. Graph the inequality y < 2x + 1.
Aim: Quadratic Inequalities Course: Adv. Alg. & Trig. Aim: How do we solve quadratic inequalities? Do Now: What are the roots for y = x 2 - 2x - 3?
Warm-up 1. Given: y = x 2 – 6x + 3 Find: Vertex, AOS, y-intercept, and graph it 2. Given: y = -2(x – 3) Find: Vertex, AOS, y-intercept, and graph.
Good Morning Systems of Inequalities. Holt McDougal Algebra 1 Solving Linear Inequalities Warm Up Graph each inequality. 1. x > –5 2. y ≤ 0 3. Write –6x.
Example 1A Solve the equation. Check your answer. (x – 7)(x + 2) = 0
SWBAT…analyze the characteristics of the graphs of quadratic functions Wed, 2/15 Agenda 1. WU (10 min) 2. Characteristics of quadratic equations (35 min)
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Graphing & Solving Quadratic Inequalities 5.7 What is different in the graphing process of an equality and an inequality? How can you check the x-intercepts.
Objective I will graph quadratic inequalities similarly to quadratic equations in order to solve quadratic inequalities.
Holt McDougal Algebra Solving Quadratic Inequalities 2-7 Solving Quadratic Inequalities Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson.
MM2A4. Students will solve quadratic equations and inequalities in one variable. d. Solve quadratic inequalities both graphically and algebraically, and.
§ 6.6 Solving Quadratic Equations by Factoring. Martin-Gay, Beginning and Intermediate Algebra, 4ed 22 Zero Factor Theorem Quadratic Equations Can be.
Word Problem worksheet questions
CHAPTER TWO: LINEAR EQUATIONS AND FUNCTIONS ALGEBRA TWO Section Linear Inequalities in Two Variables.
“Where the Points Lie” Systems of Linear Inequalities.
Lesson 2.11 Solving Systems of Linear Inequalities Concept: Represent and Solve Systems of Inequalities Graphically EQ: How do I represent the solutions.
Holt McDougal Algebra Solving Quadratic Inequalities Solve quadratic inequalities by using tables and graphs. Solve quadratic inequalities by using.
Splash Screen. Over Lesson 4–7 5-Minute Check 1 A.y = x 2 + 6x + 11 B.y = 5(x + 3) 2 – 1 C.y = 5(x – 3) 2 D.y = (x + 3) Write y = 5x x + 44.
Aim: How do we graph and solve quadratic inequality in two variables? Do Now: Graph y < x – 4.
Warm Up: Copy (what will be on your benchmark tomorrow): 1)Domain and range 2)Write linear equations 3)Write linear inequalities 4)Write systems of linear.
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Graphing and Solving Quadratic Inequalities CHAPTER 5 LESSON 8.
Math 20-1 Chapter 9 Linear and Quadratic Inequalities
4.9: Graph and Solve Quadratic Inequalities Objectives: Solve quadratic inequalities by using tables and graphs. Solve quadratic inequalities by using.
Quadratic Equations Lesson 4-5 Part 1
Solving Linear Inequalities
Identifying Quadratic Functions
Warm Up Solve each inequality for y. 1. 8x + y < 6
Graphing and solving quadratic inequalities
Quadratic and Other Nonlinear Inequalities
Graphing Quadratic Inequalities
Objectives Solve quadratic inequalities by using tables and graphs.
Chapter 3 Graphs and Functions
Lesson 6.1 – 6.2 How do you solve and graph inequalities using addition and subtraction? Solve the inequality by adding, subtracting, multiplying or dividing.
Solving Linear Inequalities
Identifying Quadratic Functions
Solving Linear Inequalities
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3.
Solving Systems of 5-6 Linear Inequalities Warm Up Lesson Presentation
Solving Systems of 5-6 Linear Inequalities Warm Up Lesson Presentation
Solving Quadratic Inequalities
Solving Quadratic Inequalities
Solving Linear Inequalities
Linear Inequalities in Two Variables 2-5
Factorise and solve the following:
Presentation transcript:

1. Graph the inequality y < 2x + 1. Warm Up 1. Graph the inequality y < 2x + 1. Solve using any method. 2. x2 – 16x + 63 = 0 7, 9 3. 3x2 + 8x = 3

Objectives Solve quadratic inequalities by using tables and graphs. Solve quadratic inequalities by using algebra.

Vocabulary quadratic inequality in two variables

Many business profits can be modeled by quadratic functions Many business profits can be modeled by quadratic functions. To ensure that the profit is above a certain level, financial planners may need to graph and solve quadratic inequalities. A quadratic inequality in two variables can be written in one of the following forms, where a, b, and c are real numbers and a ≠ 0. Its solution set is a set of ordered pairs (x, y).

y < ax2 + bx + c y > ax2 + bx + c In Lesson 2-5, you solved linear inequalities in two variables by graphing. You can use a similar procedure to graph quadratic inequalities.

Example 1: Graphing Quadratic Inequalities in Two Variables Graph y ≥ x2 – 7x + 10. Step 1 Graph the boundary of the related parabola y = x2 – 7x + 10 with a solid curve. Its y-intercept is 10, its vertex is (3.5, –2.25), and its x-intercepts are 2 and 5.

Example 1 Continued Step 2 Shade above the parabola because the solution consists of y-values greater than those on the parabola for corresponding x-values.

Example 1 Continued Check Use a test point to verify the solution region. y ≥ x2 – 7x + 10 0 ≥ (4)2 –7(4) + 10 Try (4, 0). 0 ≥ 16 – 28 + 10 0 ≥ –2 

Check It Out! Example 1a Graph the inequality. y ≥ 2x2 – 5x – 2 Step 1 Graph the boundary of the related parabola y = 2x2 – 5x – 2 with a solid curve. Its y-intercept is –2, its vertex is (1.3, –5.1), and its x-intercepts are –0.4 and 2.9.

Check It Out! Example 1a Continued Step 2 Shade above the parabola because the solution consists of y-values greater than those on the parabola for corresponding x-values.

Check It Out! Example 1a Continued Check Use a test point to verify the solution region. y < 2x2 – 5x – 2 0 ≥ 2(2)2 – 5(2) – 2 Try (2, 0). 0 ≥ 8 – 10 – 2 0 ≥ –4 

Check It Out! Example 1b Graph each inequality. y < –3x2 – 6x – 7 Step 1 Graph the boundary of the related parabola y = –3x2 – 6x – 7 with a dashed curve. Its y-intercept is –7.

Check It Out! Example 1b Continued Step 2 Shade below the parabola because the solution consists of y-values less than those on the parabola for corresponding x-values.

Check It Out! Example 1b Continued Check Use a test point to verify the solution region. y < –3x2 – 6x –7 –10 < –3(–2)2 – 6(–2) – 7 Try (–2, –10). –10 < –12 + 12 – 7 –10 < –7 

Quadratic inequalities in one variable, such as ax2 + bx + c > 0 (a ≠ 0), have solutions in one variable that are graphed on a number line. For and statements, both of the conditions must be true. For or statements, at least one of the conditions must be true. Reading Math

Example 2A: Solving Quadratic Inequalities by Using Tables and Graphs Solve the inequality by using tables or graphs. x2 + 8x + 20 ≥ 5 Use a graphing calculator to graph each side of the inequality. Set Y1 equal to x2 + 8x + 20 and Y2 equal to 5. Identify the values of x for which Y1 ≥ Y2.

The number line shows the solution set. Example 2A Continued The parabola is at or above the line when x is less than or equal to –5 or greater than or equal to –3. So, the solution set is x ≤ –5 or x ≥ –3 or (–∞, –5] U [–3, ∞). The table supports your answer. The number line shows the solution set. –6 –4 –2 0 2 4 6

Example 2B: Solving Quadratics Inequalities by Using Tables and Graphs Solve the inequality by using tables and graph. x2 + 8x + 20 < 5 Use a graphing calculator to graph each side of the inequality. Set Y1 equal to x2 + 8x + 20 and Y2 equal to 5. Identify the values of which Y1 < Y2.

The number line shows the solution set. Example 2B Continued The parabola is below the line when x is greater than –5 and less than –3. So, the solution set is –5 < x < –3 or (–5, –3). The table supports your answer. The number line shows the solution set. –6 –4 –2 0 2 4 6

Check It Out! Example 2a Solve the inequality by using tables and graph. x2 – x + 5 < 7 Use a graphing calculator to graph each side of the inequality. Set Y1 equal to x2 – x + 5 and Y2 equal to 7. Identify the values of which Y1 < Y2.

Check It Out! Example 2a Continued The parabola is below the line when x is greater than –1 and less than 2. So, the solution set is –1 < x < 2 or (–1, 2). The table supports your answer. The number line shows the solution set. –6 –4 –2 0 2 4 6

Check It Out! Example 2b Solve the inequality by using tables and graph. 2x2 – 5x + 1 ≥ 1 Use a graphing calculator to graph each side of the inequality. Set Y1 equal to 2x2 – 5x + 1 and Y2 equal to 1. Identify the values of which Y1 ≥ Y2.

Check It Out! Example 2b Continued The parabola is at or above the line when x is less than or equal to 0 or greater than or greater than or equal to 2.5. So, the solution set is (–∞, 0] U [2.5, ∞) The number line shows the solution set. –6 –4 –2 0 2 4 6

The number lines showing the solution sets in Example 2 are divided into three distinct regions by the points –5 and –3. These points are called critical values. By finding the critical values, you can solve quadratic inequalities algebraically.

Example 3: Solving Quadratic Equations by Using Algebra Solve the inequality x2 – 10x + 18 ≤ –3 by using algebra. Step 1 Write the related equation. x2 – 10x + 18 = –3

Example 3 Continued Step 2 Solve the equation for x to find the critical values. x2 –10x + 21 = 0 Write in standard form. (x – 3)(x – 7) = 0 Factor. x – 3 = 0 or x – 7 = 0 Zero Product Property. x = 3 or x = 7 Solve for x. The critical values are 3 and 7. The critical values divide the number line into three intervals: x ≤ 3, 3 ≤ x ≤ 7, x ≥ 7.

Step 3 Test an x-value in each interval. Example 3 Continued Step 3 Test an x-value in each interval. –3 –2 –1 0 1 2 3 4 5 6 7 8 9 Critical values Test points x2 – 10x + 18 ≤ –3 (2)2 – 10(2) + 18 ≤ –3 Try x = 2. x (4)2 – 10(4) + 18 ≤ –3  Try x = 4. (8)2 – 10(8) + 18 ≤ –3 x Try x = 8.

Example 3 Continued Shade the solution regions on the number line. Use solid circles for the critical values because the inequality contains them. The solution is 3 ≤ x ≤ 7 or [3, 7]. –3 –2 –1 0 1 2 3 4 5 6 7 8 9

Check It Out! Example 3a Solve the inequality by using algebra. x2 – 6x + 10 ≥ 2 Step 1 Write the related equation. x2 – 6x + 10 = 2

Check It Out! Example 3a Continued Step 2 Solve the equation for x to find the critical values. x2 – 6x + 8 = 0 Write in standard form. (x – 2)(x – 4) = 0 Factor. x – 2 = 0 or x – 4 = 0 Zero Product Property. x = 2 or x = 4 Solve for x. The critical values are 2 and 4. The critical values divide the number line into three intervals: x ≤ 2, 2 ≤ x ≤ 4, x ≥ 4.

Check It Out! Example 3a Continued Step 3 Test an x-value in each interval. –3 –2 –1 0 1 2 3 4 5 6 7 8 9 Critical values Test points x2 – 6x + 10 ≥ 2 (1)2 – 6(1) + 10 ≥ 2  Try x = 1. (3)2 – 6(3) + 10 ≥ 2 x Try x = 3. (5)2 – 6(5) + 10 ≥ 2  Try x = 5.

Check It Out! Example 3a Continued Shade the solution regions on the number line. Use solid circles for the critical values because the inequality contains them. The solution is x ≤ 2 or x ≥ 4. –3 –2 –1 0 1 2 3 4 5 6 7 8 9

Check It Out! Example 3b Solve the inequality by using algebra. –2x2 + 3x + 7 < 2 Step 1 Write the related equation. –2x2 + 3x + 7 = 2

Check It Out! Example 3b Continued Step 2 Solve the equation for x to find the critical values. –2x2 + 3x + 5 = 0 Write in standard form. (–2x + 5)(x + 1) = 0 Factor. –2x + 5 = 0 or x + 1 = 0 Zero Product Property. x = 2.5 or x = –1 Solve for x. The critical values are 2.5 and –1. The critical values divide the number line into three intervals: x < –1, –1 < x < 2.5, x > 2.5.

Check It Out! Example 3b Continued Step 3 Test an x-value in each interval. –3 –2 –1 0 1 2 3 4 5 6 7 8 9 Critical values Test points –2x2 + 3x + 7 < 2 –2(–2)2 + 3(–2) + 7 < 2 Try x = –2.  –2(1)2 + 3(1) + 7 < 2 x Try x = 1. –2(3)2 + 3(3) + 7 < 2  Try x = 3.

Check It Out! Example 3 Shade the solution regions on the number line. Use open circles for the critical values because the inequality does not contain or equal to. The solution is x < –1 or x > 2.5. –3 –2 –1 0 1 2 3 4 5 6 7 8 9

A compound inequality such as 12 ≤ x ≤ 28 can be written as {x|x ≥12 U x ≤ 28}, or x ≥ 12 and x ≤ 28. (see Lesson 2-8). Remember!

Lesson Quiz: Part I 1. Graph y ≤ x2 + 9x + 14. Solve each inequality. 2. x2 + 12x + 39 ≥ 12 x ≤ –9 or x ≥ –3 3. x2 – 24 ≤ 5x –3 ≤ x ≤ 8

Lesson Quiz: Part II 4. A boat operator wants to offer tours of San Francisco Bay. His profit P for a trip can be modeled by P(x) = –2x2 + 120x – 788, where x is the cost per ticket. What range of ticket prices will generate a profit of at least $500? between $14 and $46, inclusive